1. Suppose X is a set, \mathcal{B} is a σ -algebra on X, and $E, F \in \mathcal{B}$ are such that $E \cup F = X$ and $E \cap F = \emptyset$. Suppose μ_E and μ_F are measures on E and F, respectively. Show that there is a measure μ on X such that

$$\int_{s\in X} g(x) \, d\mu(s) = \int_{s\in E} g(x) \, d\mu_E(s) + \int_{s\in F} g(x) \, d\mu_F(s),$$

for all g which are integrable on X.

Note: While it's certainly possible to do this by hand I think it's easier to deduce it from the propositions in Section 9.5 on extension and restriction of measures.

- 2. (a) Suppose U is a non-empty subset of **R**. Show that m(U) > 0. Here, as usual m denotes Lebegue measure.
 - (b) Show that if f and g are continuous functions from **R** to **R** and f(x) = g(x) for almost all $x \in \mathbf{R}$, with respect to Lebesgue measure, then f(x) = g(x) for all x.
 - (c) Give an example of a Borel measure μ on **R** which does not have the property from the first part of the question, i.e. one for which there is a non-empty open set U with $\mu(U) = 0$.
- 3. Suppose (X, \mathcal{B}, μ) is a measurable space and E_0, E_1, \ldots is a sequence of elements of \mathcal{B} such that

$$\sum_{i=0}^{\infty} \mu(E_i) < +\infty.$$

Let F_j be the set of x such that $x \in E_i$ for at least j values of i. Show that

$$\mu(F_j) \le \frac{1}{j} \sum_{i=0}^{\infty} \mu(E_i).$$

Hint: Apply Markov's Inequality and the Monotone Convergence Theorem.