
MAU22200 2021-2022 Practice Problem Set 11
Solutions

1. (a) Suppose (X, TX) and (Y, TY ) are locally compact σ-compact Haus-
dorff topological spaces, X = X × Y and TZ is the product topology
on Z. Show that (Z, TZ) is a locally compact σ-compact Hausdorff
topological space.
Solution: X is locally compact so for each x ∈ X there is compact
neighbourhood of X, i.e. a compact K such that there is an open U
such that x ∈ U and U ⊆ K. Y is locally compact so for each y ∈ Y
there is compact neighbourhood of Y , i.e. a compact L such that
there is an open V such that y ∈ V and V ⊆ L. Then (x, y) ∈ U×V ,
U ×V ⊆ K×L, U ×V is open in Z and K×L is compact. So K×L
is a compact neighbourhood of (x, y). Every (x, y) ∈ Z has such a
neighbourhood so Z is locally compact.

X is σ-compact so there are compact K0, K1, . . . such that X =⋃∞
i=0Ki. Y is σ-compact so there are compact L0, L1, . . . such that

Y =
⋃∞

j=0 Lj . If (x, y) ∈ Z then x ∈ X and y ∈ Y so there are
Ki and Lj such that x ∈ Ki, y ∈ Lj and (x, y) ∈ Ki × Lj . So
Z =

⋃
(i,j)∈N2 Ki × Lj . Ki × Lj is compact and N2 is countable so

Z is σ-compact.

The product of Hausdorff topological spaces is Hausdorff so Z is
Hausdorff.

(b) Suppose (X, d) is a metric space such that B̄(x, r) is compact for all
x ∈ X and r > 0. Show that (X, T ) is a locally compact σ-compact
Hausdorff topological space, where T is the topology induced by the
metric.
Solution: For any x and r we have x ∈ B(x, r) and B(x, r) ⊆ B̄(x, r).
B(x, r) is open so B̄(x, r) is a compact neighbourhood of x. Every x
has such a neighbourhood so X is locally compact.

If X = ∅ then X is the union of an empty set of compact sets and
the empty set is countable so X is σ-compact. If X 6= ∅ then there
is an x ∈ X. Let Kn = B̄(x, n). Then Kn is compact. If y ∈ X then
there is an n such that d(x, y) ≤ n and hence y ∈ Kn. Therefore
y ∈

⋃∞
j=0Kj . This holds for all y ∈ X so X ⊆

⋃∞
j=0Kj . The reverse

inclusion also holds because Kj ∈ X for each j. So X is σ-compact.

All metric spaces are Hausdorff so X is Hausdorff.

2. Let C be the space of compactly supported continuous real valued functions
on R2. Define

I1(g) =

∫ d

c

∫ b

a

g(x, y) dx dy

and

I2(g) =

∫ b

a

∫ d

c

g(x, y) dy dx
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for g ∈ C. These are of course Riemann integrals. a, b, c, and d are such
that the support of g is a subset of (a, b)× (c, d). As long as this condition
is satisfied the integrals ∫ d

c

∫ b

a

g(x, y) dx dy

and ∫ b

a

∫ d

c

g(x, y) dy dx

are independent of which a, b, c, and d are chosen, so I1(g) and I2(g).
There is a version of Fubini’s theorem for Riemann integration which
implies I1(g) = I2(g) for all g ∈ C. This may or may not have been proved
in first year but you may assume it for purposes of this problem.

(a) Show that there is a unique Radon measure µ on R2 such that

I1(g) =

∫
(x,y)∈R2

g(x, y) dµ(x, y) = I2(g)

for all g ∈ C.
Solution: R2 is a locally compact σ-compact Hausdorff topological
space so we can apply the Riesz Representation Theorem. To do this
we need to check that I1 is linear and that I1(g) ≥ if g(x, y) ≥ 0 for
all (x, y). These follow easily from familiar properties of the Riemann
integral. If p, q ∈ R and f, g ∈ C then

I1(pf + qg) =

∫ d

c

∫ b

a

(pf(x, y) + qg(x, y)) dx dy

=

∫ d

c

(
p

∫ b

a

f(x, y) dx+ q

∫ b

a

g(x, y) dx

)
dy

= p

∫ d

c

∫ b

a

f(x, y) dx dy + q

∫ d

c

∫ b

a

g(x, y) dx dy

= pI1(f) + qI1(g).

If g(x, y) ≥ 0 for all (x, y) then∫ b

a

g(x, y) dx ≥ 0

for all y so ∫ d

c

∫ b

a

g(x, y) dx dy ≥ 0.

The Riesz Representation Theorem then gives the existence of a
unique measure µ such that

I1(g) =

∫
(x,y)∈R2

g(x, y) dµ(x, y).
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Combining this with Fubini’s Theorem gives

I1(g) =

∫
(x,y)∈R2

g(x, y) dµ(x, y) = I2(g).

(b) Show that if E and F are Borel sets in R then

µ(E × F ) = m(E)m(F ).

where m is Lebesgue measure on R.
Note: The cases where one or both sets have zero or infinite measure
require somewhat different arguments so assume for simplicity that
0 < µ(E) < +∞ and 0 < µ(F ) < +∞.
Hint: If χE and χF were compactly supported continuous functions
then this would be easy, but that can’t happen. Lebesgue measure is
a Radon measure so every Borel set has a compact subset which is not
much smaller than it and an open superset which is not much larger
than it. There is then a compactly supported continuous function
which is equal to 1 on the compact set and equal to 0 outside the
open set. This function is in some sense a good approximation to the
characteristic function of the original set.
Solution: Suppose 0 < p < m(E) < q and 0 < r < m(F ) < s. m is
a Radon measure so there are compact K and L and open U and V
in R such that

m(K) > p,

m(U) < q,

m(L) > r,

and
m(V ) < s.

By the variant of Urysohn’s Lemma from the notes there are com-
pactly supported continuous functions g : R → [0, 1] and h : R →
[0, 1] such that g(x) = 1 if x ∈ K, g(x) = 0 if x /∈ U , h(y) = 1 if
y ∈ L and h(y) = 0 if y /∈ V . Then

χK(x) ≤ g(x) ≤ χU (x)

for all x and
χL(y) ≤ h(y) ≤ χV (y)

for all y. Define f by

f(x, y) = g(x)h(y).

f is compactly supported and continuous so

I1(f) =

∫
(x,y)∈R2

f(x, y) dµ(x, y).
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Now

I1(f) =

∫ d

c

∫ b

a

f(x, y) dx dy

=

∫ d

c

∫ b

a

g(x)h(y) dx dy

=

∫ d

c

h(y)

∫ b

a

g(x) dx dy

=

∫ b

a

g(x) dx

∫ d

c

h(y) dy.

The Lebesgue measure m was defined so as to make the Lebesgue
integral of a compactly supported continuous function equal to the
Riemann integral so∫ b

a

g(x) dx =

∫
x∈R

g(x) dm(x)

and ∫ d

c

h(y) dy =

∫
y∈R

h(y) dm(y).

Also, by the monotonicity properties of the integral,

p < m(K) =

∫
x∈R

χK(x) dm(x) ≤
∫
x∈R

g(x) dm(x)

≤
∫
x∈R

χU (x) dm(x) = m(U) < q

and

r < m(L) =

∫
y∈R

χL(y) dm(y) ≤
∫
y∈R

h(y) dm(y)

≤
∫
y∈R

χV (y) dm(y) = m(V ) < s

Combining the equations and inequalities above we get

pr ≤ m(K)m(L) ≤
∫
(x,y)∈R2

f(x, y) dµ(x, y) ≤ m(U)m(V ) ≤ qs.

Now
χK×L(x, y) ≤ f(x, y) ≤ χU×V (x, y)
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so

µ(K × L) =

∫
(x,y)∈R2

χK×L(x, y) dµ(x, y)

≤
∫
(x,y)∈R2

f(x, y) dµ(x, y)

≤
∫
(x,y)∈R2

χK×L(x, y) dµ(x, y)

= µ(U × V ).

We also have
K × L ⊆ E × F ⊆ U × V

so
µ(K × L) ≤ µ(E × F ) ≤ µ(U × V ).

All of the the above hold in particular for p = κm(E), q = m(E)/κ,
r = κm(F ) and s = m(F )/κ, where κ ∈ (0, 1). Then

κ2m(E)m(F ) ≤ m(K)m(L) ≤
∫
(x,y)∈R2

f(x, y) dµ(x, y)

≤ m(U)m(L) ≤ m(E)m(F )

κ2
,

so

m(E×F ) ≤ µ(U×V ) ≤ 1

κ2

∫
(x,y)∈R2

f(x, y) dµ(x, y) ≤ 1

κ4
m(E)m(F )

and

m(E×F ) ≥ µ(K×L) ≥ κ2
∫
(x,y)∈R2

f(x, y) dµ(x, y) ≥ κ4m(E)m(F ).

These hold for all κ ∈ (0, 1) so

m(E × F ) ≤ m(E)m(F )

and
m(E × F ) ≥ m(E)m(F ).

5


