MAU22200 2021-2022 Practice Problem Set 11

- 1. (a) Suppose (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are locally compact σ -compact Hausdorff topological spaces, $X = X \times Y$ and \mathcal{T}_Z is the product topology on Z. Show that (Z, \mathcal{T}_Z) is a locally compact σ -compact Hausdorff topological space.
 - (b) Suppose (X, d) is a metric space such that $\overline{B}(x, r)$ is compact for all $x \in X$ and r > 0. Show that (X, \mathcal{T}) is a locally compact σ -compact Hausdorff topological space, where \mathcal{T} is the topology induced by the metric.
- 2. Let C be the space of compactly supported continuous real valued functions on \mathbb{R}^2 . Define

$$I_1(g) = \int_c^d \int_a^b g(x, y) \, dx \, dy$$

and

$$I_2(g) = \int_a^b \int_c^d g(x, y) \, dy \, dx$$

for $g \in C$. These are of course Riemann integrals. a, b, c, and d are such that the support of g is a subset of $(a, b) \times (c, d)$. As long as this condition is satisfied the integrals

$$\int_{c}^{d} \int_{a}^{b} g(x, y) \, dx \, dy$$

and

$$\int_{a}^{b} \int_{c}^{d} g(x, y) \, dy \, dx$$

are independent of which a, b, c, and d are chosen, so $I_1(g)$ and $I_2(g)$. There is a version of Fubini's theorem for Riemann integration which implies $I_1(g) = I_2(g)$ for all $g \in C$. This may or may not have been proved in first year but you may assume it for purposes of this problem.

(a) Show that there is a unique Radon measure μ on ${\bf R}^2$ such that

$$I_1(g) = \int_{(x,y)\in\mathbf{R}^2} g(x,y) \, d\mu(x,y) = I_2(g)$$

for all $g \in \mathcal{C}$.

(b) Show that if E and F are Borel sets in \mathbf{R} then

$$\mu(E \times F) = m(E)m(F).$$

where m is Lebesgue measure on \mathbf{R} .

Note: The cases where one or both sets have zero or infinite measure require somewhat different arguments so assume for simplicity that

 $0 < \mu(E) < +\infty$ and $0 < \mu(F) < +\infty$.

Hint: If χ_E and χ_F were compactly supported continuous functions then this would be easy, but that can't happen. Lebesgue measure is a Radon measure so every Borel set has a compact subset which is not much smaller than it and an open superset which is not much larger than it. There is then a compactly supported continuous function which is equal to 1 on the compact set and equal to 0 outside the open set. This function is in some sense a good approximation to the characteristic function of the original set.