- 1. Suppose E_0, E_1, \ldots is a sequence of elements of a σ -algebra on a set X. Let F be the set of $x \in X$ such that $x \in E_n$ for all but finitely many $n \in \mathbb{N}$. Let G be the set of all $x \in X$ such that $x \in E_n$ for infinitely many $n \in \mathbb{N}$
 - (a) Show that $F \subseteq G$.
 - (b) Show that $F \in \mathcal{B}$. *Hint:* What is $\bigcup_{m>0} \bigcap_{n>m} E_n$?
 - (c) Show that $G \in \mathcal{B}$. *Hint:* What is $\bigcap_{m>0} \bigcup_{n>m} E_n$?
- 2. Suppose that (X, \mathcal{B}, μ) is a measure space an E_0, E_1, \ldots is a sequence of elements of \mathcal{B} such that

$$\lim_{n \to \infty} \mu(E_n) = 0.$$

Let F be the set of $x \in X$ such that $x \in E_n$ for all but finitely many $n \in \mathbf{N}$. Show that $\mu(F) = 0$.

Hint: Apply Fatou's Lemma to the sequence of characteristic functions of the E's.

3. Suppose that (X, \mathcal{B}, μ) is a measure space an E_0, E_1, \ldots is a sequence of elements of \mathcal{B} such that

$$\sum_{i=0}^{\infty} \mu(E_i) < +\infty.$$

Let G be the set of all $x \in X$ such that $x \in F_n$ for infinitely many $n \in \mathbb{N}$ Show that $\mu(G) = 0$.

Hint: Apply the Monotone Convergence Theorem to a sequence of sums of characteristic functions.