The following is a theorem in Real Analysis:

Suppose f and g are functions from \mathbf{R} to \mathbf{R} , that $w \in \mathbf{R}$ and that $z \in \mathbf{R}$. Suppose further that $f(x) \leq g(x)$ for all $x \in \mathbf{R}$ and that $\lim_{x \to w} f(x)$ and $\lim_{x \to w} g(x)$ exist. Then $\lim_{x \to w} f(x) \leq \lim_{x \to w} g(x)$.

Here is a proof:

Suppose $\lambda > 0$. Let $\epsilon = \lambda/2$. Then $\epsilon > 0$. Let

$$z_1 = \lim_{x \to w} f(x)$$

and

$$z_2 = \lim_{x \to w} g(x).$$

By the definition of limits of real valued functions of a real variable there is a $\delta_1 > 0$ such that if $0 < |x - w| < \delta_1$ then $|f(x) - z_1| < \epsilon$ and a $\delta_2 > 0$ such that if $0 < |x - w| < \delta_2$ then $|g(x) - z_2| < \epsilon$. Let

$$\delta = \min(\delta_1, \delta_2).$$

Set $x = w + \delta/2$. Then $0 < |x - w| < \delta$ so $0 < |x - w| < \delta_1$ and $0 < |x - w| < \delta_2$. It follows that $|f(x) - z_1| < \epsilon$ and $|g(x) - z_2| < \epsilon$. Therefore

$$z_1 < f(x) + \epsilon \le g(x) + \epsilon < z_2 + 2\epsilon = z_2 + \lambda.$$

So $\lim_{x\to w} f(x) \leq \lambda + \lim_{x\to w} f(g)$ for all positive λ , which is possible only if $\lim_{x\to w} f(x) \leq \lim_{x\to w} f(g)$.

- 1. State and prove the corresponding theorem for functions from \mathbf{R}^m to \mathbf{R} , where m>0.
- 2. State and prove the corresponding theorem for functions from a normed vector space to \mathbf{R} .
- 3. State and prove the corresponding theorem for functions from a subset of a metric space to ${\bf R}$.