
MAU22200 2021-2022 Practice Assignment 4, Due 14 April 2022
Solutions

1. Define the density of a measurable subset E of R at a point x ∈ R to be

lim
h↘0

1

2h
m([x− h, x+ h] ∩ E),

if this limit exists. Is there a set E whose density at x is 1/2 for almost
all x ∈ R?
Solution: No. Applying the Lebesgue differentiation theorem to the char-
acteristic function χE we see that

lim
h↘0

1

2h
m([x− h, x+ h] ∩E) = lim

h↘0

1

2h

∫
y∈[x−h,x+h]

χE(y) dm(y) = χE(x)

for almost all x ∈ R. χE(x) 6= 1/2 so the density of E at x is different
from 1/2 for almost all x ∈ R.

2. Our theory of integration in R3 is based on the fact that the volume of a
tetrahedron with vertices at the points (x0, y0, z0), (x1, y1, z1), (x2, y2, z2)
and (x3, y3, z3) is given by

1

3!

∣∣∣∣∣∣∣∣det




1 1 1 1
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3



∣∣∣∣∣∣∣∣ .

Show that this formula behaves as expected under changes of coordinates,
i.e. that if (x′0, y

′
0, z
′
0), (x′1, y

′
1, z
′
1), (x′2, y

′
2, z
′
2) and (x′3, y

′
3, z
′
3) are related

to (x0, y0, z0), (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) by a symmetry of the
Euclidean space R3 then

1

3!

∣∣∣∣∣∣∣∣det




1 1 1 1
x′0 x′1 x′2 x′3
y′0 y′1 y′2 y′3
z′0 z′1 z′2 z′3



∣∣∣∣∣∣∣∣ =

1

3!

∣∣∣∣∣∣∣∣det




1 1 1 1
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3



∣∣∣∣∣∣∣∣ .

The symmetries of R3 are

x′ = q1,1x+ q1,2y + q1,3z + a

y′ = q2,1x+ q2,2y + q2,3z + b

z′ = q3,1x+ q3,2y + q3,3z + c

where Q is an orthogonal matrix.
Hint: Matrices are easier to work with than coordinates. Also, there’s
nothing special about R3. I just chose n = 3 to make things concrete but
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you’re better off not using any special properties of R3.
Solution: We can rewrite the equation for a symmetry as

1 = 1 · 1 + 0x+ 0y + 0z

x′ = a · 1 + q1,1x+ q1,2y + q1,3z

y′ = b · 1 + q2,1x+ q2,2y + q2,3z

z′ = c · 1 + q3,1x+ q3,2y + q3,3z

or, in matrix form 
1
x′

y′

z′

 =


1 0 0 0
a q1,1 q1,2 q1,3
b q2,1 q2,2 q2,3
c q3,1 q3,2 q3,3




1
x
y
z

 .
So 

1 1 1 1
x′0 x′1 x′2 x′3
y′0 y′1 y′2 y′3
z′0 z′1 z′2 z′3

 =


1 0 0 0
a q1,1 q1,2 q1,3
b q2,1 q2,2 q2,3
c q3,1 q3,2 q3,3




1 1 1 1
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3

 .
The determinant of the matrix

1 0 0 0
a q1,1 q1,2 q1,3
b q2,1 q2,2 q2,3
c q3,1 q3,2 q3,3


is the same as the determinant of Q, so is ±1. So, using the fact that the
determinant of a product is the product of the determinants,

det




1 1 1 1
x′0 x′1 x′2 x′3
y′0 y′1 y′2 y′3
z′0 z′1 z′2 z′3


 = ± det




1 1 1 1
x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3


 .

Taking absolute values and dividing by 3! gives the desired equation.

3. Consider the following “proof” that all bounded continuous functions on
R are zero.

Suppose h is bounded and continuous. Let

fn(x) =
1

π

∫
y∈R

nh(y)

1 + n2(x− y)2
dm(y).

We evaluate
lim
n→∞

fn(x)
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in two different ways. First of all, for any y 6= x we have

lim
n→∞

nh(y)

1 + n2(x− y)2
= 0.

{x} is of measure zero so

lim
n→∞

nh(y)

1 + n2(x− y)2
= 0

for almost all y and hence∫
y∈R

lim
n→∞

nh(y)

1 + n2(x− y)2
dm(y) =

∫
y∈R

0 dm(y) = 0.

Exchanging the limit and integral and dividing by π, we get

lim
n→∞

1

π

∫
y∈R

nh(y)

1 + n2(x− y)2
dm(y) = 0.

In other words,
lim
n→∞

fn(x) = 0.

On the other hand, we can make the change of variable

y = x+ u/n

we see that

fn(x) =
1

π

∫
u∈R

h(x+ u/n)

1 + u2
dm(u).

By the continuity of f we have

lim
n→∞

h(x+ u/n)

1 + u2
=

h(x)

1 + u2
.

Exchanging the limit and the integral and dividing by π we have

lim
n→∞

1

π

∫
u∈R

h(x+ u/n)

1 + u2
dm(u) =

1

π

∫
u∈R

h(x)

1 + u2
dm(u)

= h(x)
1

π

∫
u∈R

1

1 + u2
dm(u)

= h(x).

So
lim
n→∞

fn(x) = h(x).

Combining this with our other method of evaluating the limit we find

h(x) = 0.
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So all bounded continuous functions are zero.

Of course it’s not difficult to give examples of bounded continuous func-
tions which are not zero, so the argument above must have a fundamental
flaw.

It has gaps, of course, which could be filled in. For example, one needs to
evaluate ∫

u∈R

1

1 + u2
dm(u).

This can be done as follows. By the Monotone Convergence Theorem we
have

lim
k→∞

∫
u∈R

χ[−k,k](u)

1 + u2
dm(u) =

∫
u∈R

lim
k→∞

χ[−k,k](u)

1 + u2
dm(u)

=

∫
u∈R

1

1 + u2
dm(u).

Now ∫
u∈R

χ[−k,k](u)

1 + u2
dm(u) =

∫
u∈[−k,k]

1

1 + u2
dm(u).

For continuous functions on a closed interval the Riemann and Lebesgue
integrals both exist and agree, so∫

u∈[−k,k]

1

1 + u2
dm(u) =

∫ k

−k

1

1 + u2
du.

This integral can be evaluated using the Second Fundamental Theorem of
Calculus, since 1

1+u2 is the derivative of arctanu. This gives∫ k

−k

1

1 + u2
du = arctan(k)− arctan(−k) = 2 arctan k.

Combining everything above shows that∫
u∈R

1

1 + u2
dm(u) = lim

k→∞
2 arctan(k) = π.

So the step where I said that

h(x)
1

π

∫
u∈R

1

1 + u2
dm(u) = h(x)

had a gap, but not an actual error, since the gap can be filled. There are
various other gaps, in the sense of steps where details are missing, and all
but one of those can gaps can be filled. One of them is an actual error
though, in the sense that no filling is possible. Where is the error?
Solution: The first of the two interchanges of integrals and limits can’t be
justified. The second one can be justified by the Dominated Convergence
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Theorem, since h is bounded, i.e. there is an M ≥ 0 such that |h(y)| ≤M
for all y, and therefore ∣∣∣∣h(x+ u/n)

1 + u2

∣∣∣∣ ≤ g(u)

where

g(u) =
M

1 + u2

and ∫
u∈R

g(u) dm(u) = Mπ < +∞.

The first time I exchanged a limit and an integral cannot be justified
though.

nh(y)

1 + n2(x− y)2

is not monotone in n so the Monotone Convergence Theorem doesn’t ap-
ply.

On the other hand the best bound for

nh(y)

1 + n2(x− y)2

we can get which is independent of n is∣∣∣∣ nh(y)

1 + n2(x− y)2

∣∣∣∣ ≤ g(y)

where

g(y) =
M

2|x− y|
.

This bound comes from looking at

nh(y)

1 + n2(x− y)2

as a function of n and looking for extrema by applying the first derivative
test.1 But ∫

y∈R
g(y) dm(y) = +∞,

so we also can’t apply the Dominated Convergence Theorem.

Those two theorems are the only ones we know for exchanging limits and
integrals. Is there a fancier theorem we don’t know about which would
justify the exchange of the limit and integral in this case? No, because if
there were then we really could use the argument above to prove that all
bounded continuous functions are zero.

1This involves differentiation with respect to an integer variable, but the maximum of a
function over the positive integers is less than or equal to its maximum over the positve reals,
so this is actually legitimate!
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