
MAU22200 2021-2022 Practice Assignment 3, Due 1 March 2022
Solutions

1. `p(N) was defined for p ∈ [1,+∞) as the space of sequences α : N → R
such that

n∑
j=0

|αj |p

converges1, equipped with the norm

‖α‖p =

 n∑
j=0

|αj |p
1/p

.

It was shown in the notes that this is indeed a norm.

(a) It’s usual to define `∞(N) as the space of bounded sequences with
the norm

‖α‖∞ = sup
j∈N
|αj |.

Although the connection with the `p spaces for p < +∞ is not obvious
from the definitions it is in fact true that limp→∞ ‖α‖p = ‖α‖∞. You
don’t need to prove this however. Instead prove that

‖α‖∞ = sup
j∈N
|αj |

is in fact a norm.
Solution: We need to check the three conditions which define a norm.
The supremum of a set of non-negative numbers is non-negative so
‖α‖∞ ≥ 0 for all α ∈ `∞(N). If α 6= 0 then αk 6= 0 for some k ∈ N,
so

‖α‖∞ = sup
j∈N
|αj | > |αk| > 0.

If α = 0 then ‖α‖∞ = 0, so ‖α‖∞ > 0 if and only if α 6= 0. This
establishes the first property of norms.

If α ∈ `∞(N) and λ ∈ R then

‖λα‖∞ = sup
j∈N
|λαj | = sup

j∈N
|λ||αj | = |λ| sup

j∈N
|αj | = |λ|‖α‖∞.

This is the second property of norms.

If α, β ∈ `∞(N) then

‖α+ β‖∞ = sup
j∈N
|αj + βj | ≤ sup

j∈N
(|αj |+ |βj |)

≤ sup
j∈N
|αj |+ sup

j∈N
|βj | = ‖α‖∞ + ‖β‖∞.

This establishes the third and last property of norms.

1By this I mean converges in R. Equivalently, these are the sequences such that∑n
j=0 |αj |p < +∞ in [−∞,+∞].
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(b) Show that for p ∈ (0, 1)

‖α‖p =

 n∑
j=0

|αj |p
1/p

is not a norm on the space of sequences such that

n∑
j=0

|αj |p

converges.
Solution: Define α and β by

αj =

{
1 if α = 0,

0 if α 6= 0,
βj =

{
1 if α = 1,

0 if α 6= 1.

Then α ∈ `∞(N), β ∈ `∞(N), α + β ∈ `∞(N), ‖α‖∞ = 1 and
‖β‖∞ = 1, but

‖α+ β‖∞ = 21/p > 2 = ‖α‖∞ + ‖β‖∞

so the third property of norms is violated.

2. Suppose that α : N→ R and β : N→ R are sequences such that
∑

i∈N αi

and
∑

j∈N βj converge. Show that
∑

k∈N γk converges, where

γk =

k∑
i=0

αiβk−i

and that ∑
k∈N

γk =

(∑
i∈N

αi

)∑
j∈N

βj


Note: These are sums in the more general sense considered in Chapter 6 of
the notes, not series. The corresponding result for series isn’t true without
additional hypotheses.
Hint: As discussed in Lecture 34, it’s often better to use theorems than
definitions.
Solution: By Proposition 6.2.4∑

i∈N

|αi| < +∞

and ∑
j∈N

|βj | < +∞.
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By Tonelli’s Theorem, Theorem 6.4.3, then∑
(i,j)∈N2

|αiβj | < +∞.

By Proposition 6.2.3 then ∑
(i,j)∈N2

αiβj

converges. By Fubini’s Theorem, Theorem 6.4.4, we have∑
(i,j)∈N2

αiβj =
∑
i∈N

∑
j∈N

αiβj =
∑
i∈N

αi

∑
j∈N

βj

Let
Sk = {(i, j) ∈ N2 : i+ j = k.

Then Sk ∩ Sl = ∅ if k 6= l and
⋃

k∈N Sk = N2. Proposition 6.4.1, with S
being N2 and A being the set of sets Sk for k ∈ N and f((i, j)) = αiβj
gives ∑

(i,j)∈N2

αiβj =
∑
k∈N

∑
(i,j)∈Sk

αiβj .

But ∑
(i,j)∈Sk

αiβj =

k∑
i=0

αiβk−i = γk

so ∑
(i,j)∈N2

αiβj =
∑
k∈N

γk.

Therefore ∑
k∈N

γk =
∑
i∈N

αi

∑
j∈N

βj .

3. Suppose F is a countable subset of R, B is the Borel algebra on R and J
is the Jordan algebra on R.

(a) Show that F ∈ B.
Solution: For every x ∈ F the set R \ {x} = (−∞, x) ∪ (x,+∞) is
open and hence Borel, therefore its complement, {x} is also Borel.
But then

F =
⋃
x∈F
{x}

is a countable union of Borel sets and therefore also a Borel set.

(b) Show that if F ∈ J then F is bounded.
Hint: What are µ−(F ) and µ+(F )?
Solution: Suppose E ∈ I, where I is, as usual, the set of finite unions
of intervals, and E ⊆ F . E is then a finite union of intervals. The
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only countable intervals are the empty and the singletons {x}, which
have length 0, so µ(E) = 0. Taking the supremum over all such E
we have

µ−(F ) = sup
E∈I
E⊆F

µ(E) = 0

since J was defined as the completion of I. It then follows that

inf
G∈I
F⊆G

µ(G) = µ+(F ) = µ−(F ) = 0.

There is therefore a G ∈ I such that F ⊆ G and µ(G) < +∞. G is
therefore a finite union of bounded intervals and so is bounded. But
then F , which is a subset of G, must also be bounded.

(c) Give an example of a bounded F such that F /∈ J .
Solution:

F = [0, 1] ∪Q

works. The argument is almost identical to the one given in Propo-
sition 7.4.5 to show that Q /∈ J . Between any two rationals in [0, 1]
there is an irrational, also in [0, 1], and between any two irrationals
in [0, 1] there is a rational in [0, 1]. It follows that neither F nor
[0, 1] \F can contain an interval of positive length and therefore that
µ(E) = 0 for any E ∈ J such that E ⊆ F or E ⊆ [0, 1] \ F . If
F ∈ J then [0, 1] \ F ∈ J as well and µ(F ) = µ−(F ) = 0 and
µ([0, 1] \ F ) = µ−([0, 1] \ F ) = 0. But then

1 = µ([0, 1]) = µ(F ) + µ([0, 1] \ F ) = 0 + 0 = 0,

which is clearly false, so the assumption that F ∈ J is incorrect.
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