MAU22200 2021-2022 Practice Assignment 3, Due 1 March 2022

1. $\ell^p(\mathbf{N})$ was defined for $p \in [1, +\infty)$ as the space of sequences $\alpha \colon \mathbf{N} \to \mathbf{R}$ such that

$$\sum_{j=0}^{n} |\alpha_j|^p$$

converges¹, equipped with the norm

$$\|\alpha\|_p = \left(\sum_{j=0}^n |\alpha_j|^p\right)^{1/p}.$$

It was shown in the notes that this is indeed a norm.

(a) It's usual to define $\ell^\infty(\mathbf{N})$ as the space of bounded sequences with the norm

$$\|\alpha\|_{\infty} = \sup_{j \in \mathbf{N}} |\alpha_j|.$$

Although the connection with the ℓ^p spaces for $p < +\infty$ is not obvious from the definitions it is in fact true that $\lim_{p\to\infty} \|\alpha\|_p = \|\alpha\|_\infty$. You don't need to prove this however. Instead prove that

$$\|\alpha\|_{\infty} = \sup_{j \in \mathbf{N}} |\alpha_j|$$

is in fact a norm.

(b) Show that for $p \in (0, 1)$

$$\|\alpha\|_p = \left(\sum_{j=0}^n |\alpha_j|^p\right)^{1/p}$$

is not a norm on the space of sequences such that

$$\sum_{j=0}^{n} |\alpha_j|^p$$

converges.

2. Suppose that $\alpha \colon \mathbf{N} \to \mathbf{R}$ and $\beta \colon \mathbf{N} \to \mathbf{R}$ are sequences such that $\sum_{i \in \mathbf{N}} \alpha_i$ and $\sum_{j \in \mathbf{N}} \beta_j$ converge. Show that $\sum_{k \in \mathbf{N}} \gamma_k$ converges, where

$$\gamma_k = \sum_{i=0}^k \alpha_i \beta_{k-i}$$

¹By this I mean converges in **R**. Equivalently, these are the sequences such that $\sum_{j=0}^{n} |\alpha_j|^p < +\infty$ in $[-\infty, +\infty]$.

and that

$$\sum_{k \in \mathbf{N}} \gamma_k = \left(\sum_{i \in \mathbf{N}} \alpha_i\right) \left(\sum_{j \in \mathbf{N}} \beta_j\right)$$

Note: These are sums in the more general sense considered in Chapter 6 of the notes, not series. The corresponding result for series isn't true without additional hypotheses.

Hint: As discussed in Lecture 34, it's often better to use theorems than definitions.

- 3. Suppose F is a countable subset of \mathbf{R} , \mathcal{B} is the Borel algebra on \mathbf{R} and \mathcal{J} is the Jordan algebra on \mathbf{R} .
 - (a) Show that $F \in \mathcal{B}$.
 - (b) Show that if $F \in \mathcal{J}$ then F is bounded. *Hint:* What are $\mu^{-}(F)$ and $\mu^{+}(F)$?
 - (c) Give an example of a bounded F such that $F \notin \mathcal{J}$.