MAU22200 2021-2022 Practice Assignment 2, Due 1 December 2021

1. For each of the following subsets of **R** answer each of the following questions: Is it open? Is it closed? Is it Hausdorff? Is it connected? Is it compact? Is it bounded?

Note: You're only asked to provide yes or no answers, not proofs.

- (a) $A = (-2, 1] \cup [-1, 2)$
- (b) $B = (-\infty, -1] \cup [1, +\infty)$
- (c) $C = \mathbf{Q} \cap [-1, 1]$
- (d) $D = (-2, 2) \cap [-1, 1].$
- 2. Suppose $A \subseteq B \subseteq C$ and \mathcal{T}_C is a topology on C. Let \mathcal{T}_B be the subspace topology on B as a subset of C and let \mathcal{T}_A be the subspace topology on A as a subset of B. Is \mathcal{T}_A also the subspace topology on A as a subset of C?
- 3. Suppose (X, \mathcal{T}) is a topological space For $x \in X$ let $\mathcal{S}(x)$ be the set of sets A such that $x \in A, A \subseteq X$ and A is connected. Let

$$B(x) = \bigcup_{A \in \mathcal{S}(x)} A.$$

- (a) Show that $x \in B(x)$ and that B(x) is connected.
- (b) Show that for all $x, y \in X$ either B(x) = B(y) or $B(x) \cap B(y) = \emptyset$. *Hint:* If $B(x) \cap B(y) = \emptyset$ then there's a $z \in B(x) \cap B(y)$. Try to show that B(x) = B(z) = B(y).
- (c) Show that B(x) is closed. Hint: Try showing that the closure of B(x) is connected and contains x.
- 4. Suppose (X, \mathcal{T}) is a normal topological space and $K \subseteq U \subseteq X$ with K closed and U open. Show that there are closed L and open V such that $K \subseteq V \subseteq L \subseteq U$.