MAU22200 2021-2022 Practice Assignment 1, Due 20 October 2021 Solutions

1. Suppose (X, d) is a metric space. Define $e: X \times X \to \mathbf{R}$ by

$$e(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

(a) Show that e is a metric on X.

Hint: It is helpful first to establish the following two properties of the function $\varphi: [0, +\infty) \to [0, 1)$ defined by $\varphi(t) = t/(1+t)$.

- (i) $\varphi(t_1) < \varphi(t_2)$ if and only if $t_1 < t_2$.
- (ii) $\varphi(t_1+t_2) \leq \varphi(t_1) + \varphi(t_2).$

Solution: Following the hint, we prove the two statements above.

$$\varphi(t_2) - \varphi(t_1) = \frac{t_2 - t_1}{(1 + t_1)(1 + t_2)}.$$

The denominator is positive for all $t_1, t_2 \in [0, +\infty)$ so $\varphi(t_2) - \varphi(t_1) > 0$ if and only if $t_2 - t_1 > 0$. This establishes (i).

$$\varphi(t_1) + \varphi(t_2) - \varphi(t_1 + t_2) = \frac{t_1 t_2 (2 + t_1 + t_2)}{(1 + t_1)(1 + t_2)(1 + t_1 + t_2)}$$

The denominator is positive and the numerator is non-negative, so $\varphi(t_1) + \varphi(t_2) - \varphi(t_1 + t_2) \ge 0$. This establishes (ii).

We now check the various conditions from the definition.

$$e(x,y) = \frac{d(x,y)}{1+d(x,y)} \ge 0$$

because $d(x,y) \ge 0$. If $x \ne y$ then the numerator is positive so e(x,y) > 0. This establishes (a).

$$e(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)} = e(y,x)$$

because d(x, y) = d(y, x). This establishes (b).

$$e(x,z) = \varphi(d(x,z)) \le \varphi(d(x,y) + d(y,z))$$

Because of (i) and the fact that $d(x, z) \le d(x, y) + d(y, z)$.

$$\varphi(d(x,y)+d(y,z))\leq \varphi(d(x,y))+\varphi(d(y,z))=e(x,y)+e(y,z)$$

because of (ii).

(b) Show that the topology of open sets with respect to e is the same as the topology of open sets with respect to d.

Solution: Suppose U is an open set for d. Then for each $x \in U$ there is an r > 0 such that d(x, y) < r implies $y \in U$. Let $s = \varphi(r)$. If e(x, y) < s then $\varphi(d(x, y)) < \varphi(r)$ so d(x, y) < r and hence $y \in U$. r > 0 so s > 0. Thus there is, for every $x \in U$ an s > 0 such that if e(x, y) < s then $y \in U$. In other words, U is an open set for e.

Suppose, conversely, that U is an open set for e. Then for each $x \in U$ there is a t > 0 such that if e(x, y) < t then $y \in U$. Let $s = \min(1/2, t)$. If e(x, y) < s then e(x, y) < t and so $y \in U$. Let r = s/(1-s). Then $r \in [0, 1] \subseteq [0, +\infty)$. If d(x, y) < r then

$$e(x,y) = \varphi(d(x,y)) < \varphi(r) = s$$

by (i) and hence $y \in U$. So for every $x \in U$ there is an r > 0 such that if d(x, y) < r then $y \in U$. In other words, U is an open set for d.

2. (a) Show that for any function $f: X \to Y$ and any $A \in \wp(X)$ and $B \in \wp(Y)$ we have

$$f_*(f^*(f_*(A))) = f_*(A)$$

and

$$f^*(f_*(f^*(B))) = f^*(B).$$

Solution: Suppose $y \in f_*(A)$. Then there is an $x \in A$ such that f(x) = y. $f(x) \in f_*(A)$ so $x \in f^*(f_*(A))$. f(x) = y so $y \in f_*(f^*(f_*(A)))$. So $y \in f_*(f^*(f_*(A)))$ for each $y \in f_*(A)$. Therefore

$$f_*(A) \subseteq f_*(f^*(f_*(A))).$$

Suppose, conversely, that $y \in f_*(f^*(f_*(A)))$. Then y = f(x) for some $x \in f^*(f_*(A))$. $x \in f^*(f_*(A))$ means $f(x) \in f_*(A)$. So there is a $w \in A$ such that f(x) = f(w). But then y = f(w) and $w \in A$ so $y \in f_*(A)$. So $y \in f_*(A)$ whenever $y \in f_*(f^*(f_*(A)))$. Therefore

 $f_*(f^*(f_*(A))) \subseteq f_*(A).$

Combining the two inclusions above, we get

$$f_*(f^*(f_*(A))) = f_*(A).$$

Suppose that $x \in f^*(B)$. Then $f(x) \in B$. It follows that $f(x) \in f_*(f^*(B))$, and hence $x \in f^*(f_*(f^*(B)))$. So $x \in f^*(f_*(f^*(B)))$ whenever $x \in f^*(B)$ and hence

$$f^*(B) \subseteq f^*(f_*(f^*(B))).$$

Suppose, conversely, that $x \in f^*(f_*(f^*(B)))$, i.e. that $f(x) \in f_*(f^*(B))$. In that case there is a $w \in f^*(B)$ such that f(w) = f(x). $w \in f^*(B)$ means $f(w) \in B$, so $f(x) \in B$ and hence $x \in f^*(B)$. So $x \in f^*(B)$ whenever $x \in f^*(f_*(f^*(B)))$ and hence

$$f^*(f_*(f^*(B))) \subseteq f^*(B).$$

Combining the two inclusions above, we get

$$f^*(f_*(f^*(B))) = f^*(B).$$

(b) Is it true in general that

$$f^*(f_*(A))) = A$$

and

$$f_*(f^*(B))) = B?$$

In each case provide a proof or a counter-example to justify your answer.

Solution: Neither is true. Let $f: \{a, b\} \to \{c\}$ be defined by f(a) = f(b) = c and let $A = \{a\}$. Then $f_*(A) = \{c\}$ and $f^*(f_*(A)) = \{a, b\}$. Let $f: \{a\} \to \{b, c\}$ be defined by f(a) = b and let $B = \{b, c\}$. Then $f^*(B) = \{a\}$ and $f_*(f^*(B)) = \{b\}$.

Suppose that (D, ≼) and (E, ≺) are directed sets and τ: D → E is a monotone function such that for all q ∈ E there is a p ∈ D such that q ≺ τ(p). Suppose (Y, T) is a topological space, z ∈ Y and f: E → Y is a net such that lim f = z. Show that lim f ∘ τ = z. Solution: Suppose Z ∈ O(z). By assumption, lim f = z, so by the definition of limits of nets there is an a ∈ E such that if b ∈ E and a ≺ b then f(b) ∈ Z. Let q = a. By assumption there is a p ∈ D such that q ≼ τ(p). Suppose that r ∈ D and p ≼ r. Then a = q ≼ τ(p), τ(p) ≺ τ(r) because τ is monotone. (E, ≺) is a directed set so a ≼ τ(p) and τ(p) ≺ τ(r) imply a ≺ τ(r). Therefore f(τ(r)) ∈ Z. So if r ∈ D and p ≼ r then (f ∘ τ)(r) ∈ Z. There is such a p ∈ D for each Z ∈ O(z), so lim f ∘ τ = z.