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Plan for this week

I Monday 2pm (this lecture): General comments and module

overview

I Monday 3pm (tutorial): as usual

I Tuesday 11am: The exam and how to revise for it.

I Tuesday 1pm: Question and answer session via Microsoft

Teams. Ask questions at the session or email them in

advance.



General comments

I You can't learn all of Mathematics!

I Your goal is to try to limit what you need to remember.

I There are some theorems (or de�nitions, examples,

propositions, lemmas, etc.) that you do need to remember,

but you don't need to know most of them.

I My goal is that you should know these theorems (or

de�nitions, . . . ) and be able to use them in later modules.

Ideally you should be able to recognise them in slightly

unfamiliar contexts.

I Memorising proofs is largely a waste of time, at least for this

module. That's not to say you should ignore them though.

I'll say something about the uses of proofs later.



How to limit what you need to memorise (1/2)

I Often a later proposition makes an earlier one obsolete. For

example, I proved successively stronger versions of Fubini's

Theorem, but all are special cases of the last one, so you

only need to remember that one.

I Often a proposition is only used to prove a theorem, and
isn't of independent interest. How do you know which ones
are important?
I Things people need often tend to acquire names, e.g.

Fubini's Theorem, the Dominated Convergence Theorem,

Urysohn's Lemma, Markov's Inequality, The Cantor Set, etc.

A name is a good indicator that something is important. It

can also be used for communicating people outside this

module. Even if you happen to remember what Proposition

9.5.2 of the notes said, no one else will.
I Theorems are usually more important than propositions and

propositions more important than lemmas, but this isn't very

reliable, e.g. Fatou's Lemma is more important than the

Tietze Extension Theorem.



How to limit what you need to memorise (2/2)

I Don't learn special cases separately. For example, all the

convergence theorems for functions can be applied to

characteristic functions to get statements for measures of

sequences of sets. If you know this then you don't have to

learn those consequences separately. There are exceptions

though. mn(E � F ) = mn0(E )mn00(F ) follows from Fubini's

Theorem, but is worth knowing separately.



Why proofs?

I've given proofs for almost everything, but now I'm telling you

you don't need to memorise them. Why did I give them?

I It keeps me honest. and it's what mathematicians do.

I A fact that gets used all the time in proofs in the notes is

likely to be useful in your own proofs. How many times did I

use, explicitly or implicitly, the linearity and monotonicity of

integrals?

I They're often a source of useful tricks, e.g. the \nice plus

small" idea from the proofs of the Lebesgue Di�erentiation

Theorem and Fubini's Theorem is good to know.

I Sometimes you want a slight variant of a known theorem to

be true. If you know the proof you can often make a good

guess at whether it is true. For example, we didn't use much

of the structure of Rn in proving Fubini, so you might guess,

correctly, that there are more general versions.



Overview of �rst semester (1/3)

I Chapter 1 (Limits): This was mostly motivational in nature.

Either it worked or it it didn't but most of the important bits

reappear later. The main thing to retain is how a normed

vector space is a metric space and how a metric space is a

topological space. Also, the properties of images and

preimages are used everywhere.

I Chapter 2 (Sets and Cardinality): This isn't a module on Set

Theory, but the notions of �nite, countable and uncountable

are fundamental to Semester 2. The Cantor set often

appears as an example or counter-example in Topology and

in Measure and Integration.



Overview of �rst semester (2/3)

I Chapter 3 (Topological spaces): This is where things really

begin. Topologies, interiors, closures, the Hausdor� property,

continuity, subspace topologies, product topologies and

compactness are used everywhere. Density, boundaries,

weaker vs stronger topologies, quotient topologies,

connectedness and normal spaces are not far behind.

I Chapter 4 (Metric spaces): Most of the topological spaces

we actually meet are metric spaces, but often we only care

about their topological properties. Some notions only make

sense with a metric though: boundedness, Lipschitz and

uniform continuity, Cauchy sequences/nets/�lters,

completion, etc. For some metric spaces we can characterise

the compact sets explicitly, e.g. Heine-Borel for Rn or

Arzel�a-Ascoli for spaces of continuous functions.



Overview of �rst semester (3/3)

I Chapter 5 (Normed vector spaces): These are very important

in more advanced analysis, e.g. Functional Analysis or Partial

Di�erential Equations. We only cover their most basic

properties in this module. `p is a useful source of examples.

Most of Semester 2 could be done in the context of Banach

spaces, i.e. complete normed vector spaces. We could have

de�ned sums and integrals of functions with values in a

Banach space, for example, but didn't.



Overview of second semester (1/4)

I Chapter 6 (In�nite sums): This chapter is partly a warm up

for integration. We do need many of these results for proving

the corresponding ones for integrals though. For example,

the proof of the Monotone Convergence Theorem for

integrals uses the Monotone Convergence Theorem for

sums. Eventually, though, almost everything in this chapter

becomes a special case (counting measure) of general results

for integrals.

I Chapter 7 (Content and measure): This is basic to the

theory of integration. The main point is really the de�nition

and elementary properties of measures. For this of course

you need �-algebras. Most of the results here are trivial

consequences of the de�nitions. The main exception is

completion.



Overview of second semester (2/4)

I Chapter 8 (Integration): I've chosen to tie Riemann and

Lebesgue integration closer together than is usual. This

probably makes Riemann integration harder to understand

and Lebesgue integration easier. The highlight of this

chapter is the three convergence theorems in the last section.

I Chapter 9 (Constructing measures): This is mostly just a

chapter on the Riesz Representation Theorem. As far as this

module is concerned, the RRT is our only means of

constructing non-trivial measures. There are other ways, but

they're equally ugly. I like this one, because it concentrates

on the integrals, which are what we ultimately want, rather

than the contents and measures.



Overview of second semester (3/4)

I Chapter 10 (The Fundamental Theorem of Calculus): For

Riemann integration the FTC is, well, fundamental. It's the

main way of computing integrals of non-trivial functions. For

Lebesgue integration it's a bit less fundamental, but still

useful. Figuring out the correct hypotheses is much more

complicated, as is proving the theorem. Ultimately we get

both parts of the theorem from the corresponding results for

Riemann integrals, plus various approximation arguments.

I Chapter 11 (A�ne spaces and convex sets): If you're willing

to believe that Rn has a well de�ned notion of

area/volume/content for things which look like

polygons/polyhedra then you can largely skip this chapter,

and the �rst two sections of the next chapter.



Overview of second semester (4/4)

I Chapter 12 (Higher Dimensions): The main point of this

chapter is show that Lebesgue integration in Rn is well

de�ned for n > 1, and satis�es Fubini's Theorem. Fubini's

Theorem gives a su�cient condition, integrability in the

product space, for exchanging integrals. There are

counter-examples if the condition is not satis�ed. Tonelli's

Theorem is more or less a by-product, but a useful one.

They're often used in combination, with the conclusion of

Tonelli used to show the hypothesis of Fubini is satis�ed.


