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Lebesgue Measure (1/2)

We hope to get Lebesgue measure in Rn from the Riesz

Representation Theorem, just as in R. For this we need the

following proposition:

Every compactly supported continuous function on Rn is

integrable with respect to Jordan content.

The proof is straightforward, and mimics the one in R,

I g is supported in some hypercube [�M;M]n.

I g is uniformly continuous there so there is a � > 0 such that

g varies by at most �

(2M)n in any ball of radius �.

I Choose k >
p
n

�
and divide [�M;M]n into (2Mk)n

hypercubes of side length 1=k . g varies by at most �

(2M)n in

each. Toss in the complement of [�M;M]n to get a

partition of Rn. g is identically zero there. g can be

approximated from above and below by simple functions

whose integrals are within � of each other.



Lebesgue Measure (2/2)

I (g) =

∫
x2Rn

g(x) d�J(x)

is therefore well de�ned. It is linear and has the positivity property

that g � 0 implies I (g) � 0 The Riesz Representation Theorem

gives a Borel measure �B such that

I (g) =

∫
x2Rn

g(x) d�B(x):

We can then complete (X ;BB ; �B) to (X ;BL; �L). BL is called

the Lebesgue �-algebra, its elements are called Lebesgue

measurable sets �L is called Lebesgue measure. It's usually

denoted m, or mn if we need to specify the dimension.



Fubini's Theorem for nice functions (1/2)

Suppose g is a compactly supported continuous function

on R
n where n = n0 + n00. Then I1(g) = I (g) = I2(g),

where

I1(g) =

∫
x02Rn

0

∫
x002Rn

00

g(x0; x00) d�n00(x00) d�n0(x0);

I2(g) =

∫
x002Rn

00

∫
x02Rn

0

g(x0; x00) d�n0(x0) d�n00(x00)

The integrals here can be interpreted as integrals with respect to

the measure m, the measure �B or the content �J , since they're

all equal for compactly supported continuous functions. We'll use

�J for the proof, but we'll use the Ij notation later to mean mn

for g which need not be compactly supported and continuous.



Fubini's Theorem for nice functions (2/2)

The proof follows the construction for the proof that compactly

supported continuous functions are integrable. If g is simple and

corresponds to the partition into hypercubes then

I1(g) = I (g) = I2(g). This follows from our formula for integrals

of simple functions, and the fact the we can rearrange the order

of �nite sums. In general g isn't simple, but we can �nd simple f

and h with f � g � h and∫
x2Rn

h(x) d�J(x) �

∫
x2Rn

f (x) d�J(x) + �

It follows that I1(g), I (g), and I2(g) are within � of each other.

This is true for all � > 0, and g doesn't depend on �, so I1(g),
I (g), and I2(g) are all equal.



Fubini's Theorem for general functions (1/5)

The real Fubini's Theorem requires only that g is integrable, not

compactly supported and continuous. Of course compactly

supported continuous functions are integrable, so the version we

now have is a special case of the one we want. The general case

is easiest to prove in stages.

Most of the time we work with sets rather than functions. Let

�j(E ) = Ij(�E ). Once we have Fubini's Theorem it will follow

that �1(E ) = mn(E ) = �2(E ), but we don't know this initially.

Initially we don't even know �j is a measure. We'll have to prove

its properties by hand.



Fubini's Theorem for general functions (2/5)

The following properties of Ij follow from its de�nition as the

integral of an integral of a characteristic function:

I Ij is linear.

I Ij is monotone, in the sense that if f � g then Ij(f ) � Ij(g).

I There is a version of the Monotone Convergence Theorem

for Ij . To get it we just apply the usual Monotone

Convergence Theorem to each of the integrals in the

de�nition of Ij .

I There is a version of the Dominated Convergence Theorem

for Ij . We just apply the usual Dominated Convergence

Theorem to each of the integrals in the de�nition of Ij .



Fubini's Theorem for general functions (3/5)
The following properties of �j follow from those of Ij :

I �j is monotone, i.e. E � F implies �j(E ) � �j(F ).
I �j is well behaved with respect to increasing sequences of

sets, i.e. if E0 � E1 � � � � then

�j

( 1⋃
k=0

Ek

)
= lim

k!1
�j(Ek)

To get this we apply the usual Monotone Convergence

Theorem to the sequence of characteristic functions.

I �j is well behaved with respect to decreasing sequences of

sets, i.e. if E0 � E1 � � � � and �j(E0) < +1 then

�j

( 1⋂
k=0

Ek

)
= lim

k!1
�j(Ek)

We apply the Dominated Convergence Theorem to the

sequence of characteristic functions. The hypothesis that

�j(E0) < +1 is needed to make this work.



Fubini's Theorem for general functions (4/5)

Now that �1 and �2 have the properties we expect from a

measure we gradually show that they are in fact mn.

I If K is compact then �j(K ) � mn(K ).

I If U is open then �j(U) � mn(U).

I If K is compact then �j(K ) = mn(K ).

I If U is open then �j(U) = mn(U).

I If E is Borel then �j(E ) = mn(E ).

I If E is Lebesgue measurable then �j(E ) = mn(E ).

In spirit, though not in detail, this is like how we proved the Riesz

Representation Theorem, gradually weakening hypotheses and

strengthening conclusions. I'll sketch the proof of these properties

in turn.



Fubini's Theorem for general functions (5/5)

If K is compact then �(K ) � mn(K ). To prove this, use the fact

that mn is a Radon measure, Urysohn's Lemma, and Fubini's

Theorem for compactly supported continuous functions.

In more detail, mn(K ) < +1. We can �nd a � such that

mn(K ) < � < +1. Then we can �nd an open superset U of K

such that mn(U) < �. Then can �nd a compactly supported

continuous h : Rn ! [0; 1] such that h(x) = 1 for x 2 K and

h(x) = 0 for x =2 U. So �K � h � �U . Ij and I are monotone so

�j(K ) = Ij(�K ) � Ij(h) and I (h) � I (�U) = mn(U). h is

compactly supported and continuous so Ij(h) = I (h). Therefore
�j(K ) � mn(U) < �. This holds for all � > mn(K ) so
�j(K ) � mn(K ).
The proof that �j(U) � mn(U) if U is open is very similar. It's

not quite identical because we don't, for example, have

mn(U) < +1.

I'll sketch the proof of the remaining properties next time.


