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Convex geometry (1/6)

Last time we had the problem that the intersection of triangles

generally isn't a triangle. It could be empty a point, a line

segment, a triangle, a quadrilateral, a pentagon or a hexagon.

One thing we can be sure of is that it's convex.

For tetrahedra there are many possibilities, but again they're all

convex. In general, simplices are convex and intersections of

convex sets are convex. A lot of the geometry we need for

understanding semilinear sets is convex geometry.

Hopefully you already have some intuition about convex sets.

There's a chapter in the notes on a�ne and convex geometry to

�ll this in somewhat and add some details which are probably

unfamiliar. I've mostly not bothered with proofs in that chapter.



Convex geometry (2/6)

An a�ne space is a subset of Rn which, if it contains x and y,

also contains the line (1� t)x+ ty for t 2 R.

A convex subset of Rn is one which, if it contains x and y, also

contains the line segment (1� t)x+ ty for t 2 [0; 1].
A�ne sets are convex, but most convex sets aren't a�ne. A�ne

sets are just translates of (linear) subspaces.

The a�ne span of a set is the smallest a�ne space containing it.

The convex hull of a set is the smallest convex set containing it.

The dimension of a convex set is de�ned to be the dimension of

its a�ne span. This de�nition behaves as expected, but it

wouldn't if we didn't restrict it to convex sets.

Everything I'm going to say would work with an arbitrary �nite

dimensional normed vector space in place Rn, and some of it

would work with just a normed vector space.



Convex geometry (3/6)

It's useful to talk about the relative interior of a convex set. For

example, the relative interior of the line segment (1� t)x+ ty for

t 2 [0; 1] is the set of (1� t)x+ ty for t 2 (0; 1) except if x = y,

in which case it's x. In general, the relative interior of a set is its

interior when considered as subset of its a�ne span, with the

subspace topology. We say it's relatively open if it is equal to its

relative interior.

We don't introduce a notion of relative closure though.

If C is non-empty convex set then the relative interior of C is a

non-empty relatively open convex set contained in C and the

closure of C is a non-empty closed convex set containing C . This

is geometrically intuitive, but not so easy to prove.



Convex geometry (4/6)

Examples of convex sets include the open halfspace∑
n

i=1 aixi + b > 0 and the closed halfspace
∑

n

i=1 aixi + b � 0.

Here a1, . . . , an are assumed not all to be zero. The open

halfspace is the relative interior of the closed halfspace and the

closed halfspace is the closure of the open halfspace.

x0, . . . , xk are said to be a�nely independent if their a�ne span

is of dimension k . In that case the simplex
∑

k

i=0 tixi with

t0; t1; : : : ; tk � 0 and
∑

k

i=0 ti = 1 is a closed convex set of

dimension k . Its relative interior is the set of points
∑

k

i=0 tixi

with t0; t1; : : : ; tk > 0 and
∑

k

i=0 ti = 1. The closure of the latter

is the former.

In general the closure of a convex set is equal to the closure of its

relative interior and the relative interior of a convex set is equal to

the relative interior of its closure. In this respect convex sets are

better behaved topologically than sets in general.



Convex geometry (5/6)

A convex polytope is the intersection of �nitely many closed

halfspaces. We want to de�ne a complex as a �nite collection of

bounded convex polytopes, joined together at faces. To do this,

we need a de�nition of faces. It turns out to be simplest to do

this for general convex sets, not speci�cally for bounded convex

polytopes.

F is said to be a face of C if x; y 2 F whenever x; y 2 C ,

(1� t)x+ ty 2 F and t 2 (0; 1).
This is not quite the terminology you're used to from polyhedra in

R3. A k-dimensional bounded convex polytope has faces of

dimensions �1 through k , not just dimension k � 1. Think of

faces as corresponding to vertices, edges, \faces", etc.



Convex geometry (6/6)

The de�nition of a face isn't intuitive, but it does have the

expected properties.

I Faces of convex sets are convex.

I Faces of closed convex sets are closed convex sets.

I If E is a face of F and F is a face of C then E is a face of C .

I If E and F are faces of C then E \ F is a face of C .

I If E is a face of C and E 6= C then the dimension of E is

less than the dimension of C .

I The set where a linear function on a convex set takes its

maximum is a face of that set.

I If the relative interiors of two faces have a point in common

then they are the same face.

I A convex polytope has only �nitely many faces.



Complexes (1/3)

A �nite set C of compact convex polytopes is called a complex if

F 2 C whenever E 2 C and F is a face of E and if E \ F is a face

of both E and F whenever E 2 C and F 2 C.

The underlying set of C is
⋃

E2C
E . Note a complex is a �nite set

of subsets of Rn while its underlying set is a (generally in�nite)

subset of Rn. Also, di�erent complexes can have the same

underlying set. Starting from a subset S � Rn you can think of a

complex C such that S is the underlying set of C as a

decomposition of S . It's not quite a partition because faces

intersect, but the relative interiors of the non-empty elements of

C are a partition of S .

The dimension of a complex is the maximum of the dimensions of

its elements. The mesh of a complex is the maximum of the

diameters of its elements.

A complex is called simplicial if all of its elements are simplices,



Complexes (2/3)
A subcomplex of a complex is a subset which is also a complex.

Not every subset is a subcomplex. If we take a subset which

contains a compact convex polytope but not one of its faces then

it won't be a subcomplex.

A complex C0 is said to be a re�nement of a complex C if they

have the same underlying set and for every E 0 2 C0 there is an

E 2 C such that E 0 � E .

We can get a common re�nement of two complexes C1 and C2
with the same underlying set by taking sets of the form E1 \ E2

where E1 2 C1 and E2 2 C2. This complex generally isn't

simplicial, even if C1 and C2 were.

Any complex has a simplicial re�nement though. To get such a

re�nement, choose a '(E ) in the relative interior of E for each

non-empty E 2 C. We take the elements of C0 to be the simplices

with vertices '(E0), . . . , '(Ek) for each strictly increasing chain

E0 � E1 � � � � � Ek of non-empty elements of C

For an illustration of both procedures, look at the pictures from

the end of last lecture.



Complexes (3/3)

To de�ne a content on the semilinear algebra we need two basic

facts.
If E is a bounded semilinear set then there is a simplicial

complex C and a subset A � C such that E is the union

of the relative interiors of the elements of A. In fact for

each � > 0 there is one with mesh less than �.

and
The sum of the contents of the n-dimensional simplices

in the A depends only on E, not on A and C.


