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How we developed Lebesgue integration in R (1/2)

1. We started from a collection of sets for which we know how

their measure should be de�ned: the intervals.

2. We extended that collection to the Boolean algebra it

generates, I. We can write each element of I as a union of

intervals, but generally in more than one way.

3. We extended the length to a content on I. We can do this

by summing the lengths of the integrals, but some argument

is needed to show that this is independent of how we write

our set as a union of intervals. This is already adequate for

integrating compactly supported continuous functions.

4. We complete our Boolean algebra and content to get the

Jordan algebra and Jordan content.

5. We use the Riesz Representation Theorem to get a Borel

measure.

6. We complete again to get Lebesgue measure.



How we developed Lebesgue integration in R (2/2)

I Step 1 (de�ning the length of an interval was trivial).

I Step 2 (understanding the Boolean algebra generated by the

intervals) wasn't much harder.

I Step 3 (extending length by summation) required a trick to

show that the content is well de�ned, i.e. independent of

how we write our set as a union of intervals. The fact that

compactly supported continuous functions are integrable

follows from uniform continuity and the fact that we can

partition an interval into arbritrarily small subintervals.

I Step 4 (completion of the content) was long and messy.

I Step 5 (the proof of the Riesz Representation Theorem) was

even longer and messier.

I Step 6 (completion of the measure) was easy, because we

already did all the work in Step 4.



How to develop Lebesgue integration in Rn

We can follow essentially the same procedure in higher

dimensions.

The steps which were hard, Steps 4-6, are now easy, because we

did them in enough generality that we don't need to repeat them.

Completion just requires a content/measure space and the Riesz

Representation Theorem just requires a locally compact

�-compact Hausdor� topological space. Almost all the structure

of Rn is irrelevant.

Unfortunately, the steps which were easy are now hard, especially

Steps 2 and 3. This is essentially a problem in Geometry, and

Geometry is just a lot more complicated in higher dimensions

than in one dimension.



Step 1 (1/4)

For Step 1 we need some collection of sets for which we know

what the measure should be. In R2 we could take triangles or

rectangles. In R3 we could take tetrahedra or rectangular solids.

In Rn we could take simplices or boxes. A simplex is the higher

dimensional generalisation of an interval, triangle or tetrahedron.

A box is the higher dimensional generalisation of an interval,

rectangle or rectangular solid. The term \simplex" is standard.

The term \box" less so.

A box is a Cartesian product of intervals. Its content is the

product of their lengths. A simplex is the set of points of the

form
∑n

i=0 tixi for some x0, x1, . . . , xn, where t0; t1; : : : ; tn � 0

and
∑n

i=0 ti = 1.



Step 1 (2/4)

The content of the simplex is
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where xi ;j is the i 'th coordinate of xj . If n = 1 the simplex is the

set of points t0x0 + t1x1 where t0; t1 � 0 and t0 + t1 = 1. I

haven't used indices for the coordinates because there's only one

coordinate! In other words, it's the interval

[min(t0; t1);max(t0; t1)]. The content (length) of this simplex

(interval) is ∣∣∣∣det([ 1 1

x0 x1

])∣∣∣∣ = jx1 � x0j;

as expected.



Step 1 (3/4)

If n = 2 the simplex is the set of points

t0(x0; y0) + t1(x1; y1) + t2(x2; y2), where t0; t1; t2 � 0 and

t0 + t1 + t2. In other words, it's the triangle with vertices (x0; y0),
(x1; y1) and (x2; y2). As is traditional, I've used x and y as

coordinates in the plane rather than x1 and x2. This time there's

no preferred ordering of the vertices. The content (area) of this

simplex (triangle) is

1

2
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2
:

This is indeed the correct formula for the area of the triangle with

vertices (x0; y0), (x1; y1) and (x2; y2).



Step 1 (4/4)

I'll spare you the case n = 3, but the general formula does indeed

give the correct value for the volume of the tetrahedron with

vertices (x0; y0; z0), (x1; y1; z1), (x2; y2; z2) and (x3; y3; z3).
Do we want to choose simplices or boxes? The box version looks

simpler but it has two disadvantages. Aesthetically, it seems

wrong to de�ne area, volume, etc. of general sets in R2, R3, etc.

in a way which strongly depends on the choice of axes.

Practically, it becomes surprisingly hard to show that congruent

sets have equal area, volume, etc. The simplex version has a

de�nition which appears to depend on the choice of axes, but it's

an easy Linear Algebra calculation to see that it doesn't. If we

choose simplices we can use the fact that any rotation or

re
ection of a simplex is another simplex. The rotation or

re
ection of a box isn't generally a box.



Step 2 (1/3)

We now need to understand the Boolean algebra generated by

the simplices. That Boolean algebra is a bit messy. It's

convenient to use a slightly larger Boolean algebra, generated by

the open halfspaces. An open half space is the set where a linear,

not necessarily homogeneous, function is positive. This Boolean

algebra is called the semilinear algebra. Its elements are called

semilinear sets. In n = 1 the semilinear algebra is I The Boolean

algebra generated by the simplices, i.e. �nite closed intervals,

would be smaller, since it doesn't contain [0;+1).



Step 2 (2/3)

Every bounded element of I can be partitioned by points and

open intervals. There's a minimal such partition.

Every bounded semilinear set in R2 can be partitioned by points,

the interiors of line segments, and the interiors of triangles. For

example, the closed unit square is the union of four points, �ve

interiors of line segments, and the interiors of two triangles. One

triangle has vertices (0; 0), (0; 1) and (1; 1). The other has

vertices (0; 0), (1; 0) and (1; 1). The line segments are the sides

of these triangles and the points are their vertices. This time

there's no minimal partition. The triangle with vertices (0; 0),
(0; 1) and (1; 0) and the one with vertices (0; 1), (1; 0) and (1; 1)
would also work, but there's no partition of which both are

re�nements. What we're doing here is called triangulation in R2

and simplicial decomposition in Rn.



Step 2 (3/3)

There are better and worse ways to triangulate a semilinear set in

R
2. We could split the unit square into the triangle with vertices

(0; 0), (0; 1) and (1; 0), one with vertices (0; 1), (1=2; 1=2) and
(1; 1) and one with vertices (1; 0), (1=2; 1=2) and (1; 1). The
point (1=2; 1=2) is a vertex of two triangles but is an interior

point of a side of the other. This isn't the end of the world, but

it's awkward and avoidable.

One can de�ne a simplicial complex, which corresponds to a good

triangulation, i.e. one which avoids complications like the one

above. Every bounded semilinear set has a simple description in

terms of a simplicial complex.



Pictures (1/4)



Pictures (2/4)



Pictures (3/4)



Pictures (4/4)



Step 3

We can calculate the area/volume/content of a bounded

semilinear set from the simplicial complex. Essentially, we just

add the area/volume/contents of the simplices of dimension

2/3/n, which are calculated from the formula given earlier. I said

\calculate" rather than \de�ne" because it's not obvious this is a

property of the semilinear set and not of the simplicial complex.

There are many di�erent simplicial complexes which give the same

semilinear set. Does the sum of area/volume/contents of the

simplices depend on which one is chosen? Luckily it doesn't, but

this requires a proof. We can prove this by introducing a notion

of re�nement, such that any two such partitions have a common

re�nement and show that the area/volume/content is the same

for a partition and its re�nement. There's a catch, though. The

intersection of two intervals is an interval but the intersection of

triangles/simplices isn't generally a triangle/simplex! So the

obvious way of getting a common re�nement doesn't work.



More pictures (1/8)



More pictures (2/8)



More pictures (3/8)



More pictures (4/8)



More pictures (5/8)



More pictures (6/8)



More pictures (7/8)



More pictures (8/8)


