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Where we are now

We are trying to prove
Suppose F: [a, b] = R is Lipschitz continuous. Let E be
the set of x such that F'(x) is differentiable at x. Then
m([a, b]\ E) =0, F' is integrable on E N [a, b] and

/ F'(x) dm(x) = F(b) — F(a).
x€EN[a,b]

We saw how to prove this from two propositions. | sketched the
proof of the first one,
Suppose | is a non-empty interval and F: | — R is Lip-
schitz continuous. Then there are Lipschitz continuous
functions G and H such that G is monotone increasing,
H is monotone decreasing and F = G + H.

last time.



Dini derivatives (1/9)
Today I'll sketch the proof of the second one,
Suppose | is a non-empty interval and F: | — R is con-

tinuous and monotone. Then F is differentiable at x for
almost all x € I.

Even if you don't know anything about the possible
differentiability of a function you can still define the Dini
derivatives

DT F(x) = limsup Flx+ h/)7 - F(X),
N)
F(x+ h) — F(x)

DiF(x) = Iilrp\igf

>

D~ F(x) = limsup - " F hg — )
h, 0

.. F(x+h
D_F(x) = I|fr7n/|(8f p

~—

- Fl0)




Dini derivatives (2/9)
The following are useful properties of the Dini derivatives.
> Suppose F is a function from an open interval in R to R.
Then Dy F(x) < DFf(x) and D_F(x) < DF~(x). If Fis
monotone increasing then 0 < Dy F(x) < DF*(x) and
0 < D_F(x) < DF~(x).
> F is differentiable at x if and only if

DTF(x) = DyF(x) = D”F(x) = D_F(x) € R.

» If / is an interval and F: | — R is continuous then the Dini
derivatives of F are all measurable.

The first two are easy. The last is more complicated. In fact the
continuity assumption is not needed, but it makes the proof
considerably simpler. The proof illustrates some useful tricks, so
I'll give it in full.



Dini derivatives (3/9)
It suffices to prove measurability for one of the four Dini
derivatives. The other three can then be obtained by replacing
F(x) by F(—x), —F(x) or —F(—=x). I'll prove it for DF .
F h)y—F
DF*(x) = limsup (x + ) (x)
h—0 h
F h)y—F
= inf sup (x+1h) (X)
ke(0,490) pe (0,k) h

Infima and suprema of countable collections of measurable sets

are measurable, but unfortunately (0, +o0) and (0, k) are

uncountable. We need to get around this fact somehow. Let
F(x+ h) — F(x)

y = sup h
he(0,k)NQ

Then F i F
< p FOCER) = F()

he(0,k) h
because (0, k) N Q is a subset of (0, k).




Dini derivatives (4/9)
Suppose F(x+h)— F(x)
= h:FOF,)k) h '
Then there is an h € (0, k) such that

F(x+h)— F(x)
< .
h
Another way to say this is that the set

{h ¢ (0.1): F(x+h/3— F(x) >y}

is non-empty. It's open by the continuity of F and every
non-empty subset of the reals contains a rational, so there is an
h € (0, k) N Q such that

F(x+h) — F(x)

y <



Dini derivatives (5/9)

he (0, k)N Q and
F(x+ h)— F(x)
p )
But this is imposssible so the assumption that
F h)— F
Sy FOENZF()
he(0,k) h

was false and therefore
F(x+h)— F(x)

y = sup
he(0,k) h
i.e.

F(x+h)— F(x) F(x+ h) — F(x)

sup = sup
he(0,6)NQ h he (0,k) h



Dini derivatives (6/9)

sup F(X—i—h)—F(x): sup F(x+ h)— F(x)
he(0,K)NQ h he(0,k) h
o)
F(x+h)—F
DFf(x)= inf sup (x+ 1) (X)
k€(0,+00) he(0,k) h
F(x+h)—F
= inf sup (x+ ) (X)
k€(0,400) he(0,k)NQ h
Let
h)y—F
z= inf su Flcth) (X)

= in p
k€(0,400)NQ pe(0,4)NQ
(0, +00) NQ is a subset of (0, +00) so

F h)—F
z> inf sup (x+ ) (x)
ke(0,40) he(0,k)NQ h




Dini derivatives (7/9)
If

F h)—F
z> inf sup (x+h) (x)
k€(0,400) he(0,k)NQ h
then there is a k € (0 + o0) such that
F h) — F
z> sup (x+1h) ()
he(0,k)NQ h

Every non-empty open subset of the reals contains a rational
number so there is a j € (0, k)N Q. Then

0./)NQCc(0.k)NQ
s0

F h)—F F h)—F
wp FOEM=F) 0 FOch) = F()
he(0./)NQ h he(0,k)NQ h

and therefore
F h—F
z> sup (x+h) (X)
he(0,/)NQ h




Dini derivatives (8/9)

F h)—F
z = inf sup b+ h) (X)
k€(0,400)NQ pe(0,4)NQ

j€(0,k)NQ, and

F h)—F
zZ> sup (x+h) (X).
he(0,/)NQ h
But this is impossible so
F(x+ h) — F(x)

z= inf sup .
k€(0,400) he(0,k)NQ h

In other words,

sup F(x+h)— F(X).

D+F(X) = inf
k€(0,400)NQ he(0,k)NQ h

Now we can use the fact that infima and suprema of countable
collections of measurable functions are measurable.



Dini derivatives (9/9)

Suppose F : [a, b] — R is monotone increasing and X > 0.
Then there is a C > 0 such that

m({x €a.b]: DYF(x)>A}) < C
m({x €[a b]: DyF(x)>A}) < C
m({x€lab]: D F(x)>A}) <C
m({x € [a b]: D_F(x) > A}) < C(b);F(a)

If F is continuous then the inequalities above hold with
C=1.
The proof is long and | won't give it here. We only need the
continuous case in order to prove the Fundamental Theorem of

Calculus. This would follow from Hardy-Littlewood if we already
had the Second Fundamental Theorem of Calculus.



Differentiability almost everywhere (1/2)

The proof that continuous monotone functions are differentiable
almost everywhere is long but the main ideas are:

» D, F(x) < DYF(x) and D_F(x) < D™ F(x) for all x.
» If we can show that DT F(x) < D_F(x) and

D™ F(x) < D4 F(x) for all almost all x then F we can
conclude that F is differentiable for almost all x.

» If DTF(x) > D_F(x) then there are p, g € Q such that

D_F(x)<p<qg<DTF(x).

» If we can show that m(Ap,q) = 0, where
Apg={x:D_F(x)<p<qg<D"F(x)}

then m (U Ap,q) =0 and Dt F(x) < D_F(x) almost
everywhere.



Differentiability almost everywhere (2/2)
» Similarly, if we can show that m(A, 4) = 0, where
Bpg={x: DyF(x)<p<qg<D F(x)}

then m (U Bp,q) = 0 and D™ F(x) < D4 F(x) almost
everywhere.

» To show that A, 4 is null we first show that its average value
is bounded by p/g < 1 almost everywhere, i.e. that

1
%m(Ap,q N(x—hx+h)) <

Qo

This follows from the “Hardy-Littlewood” inequalities.

> The Lebesgue Differentiation Theorem says that this average
is equal to x4, ,(x) for almost all x. In other words, almost
all x are not in Ap 4.



