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Where we are now

We are trying to prove

Suppose F : [a; b]! R is Lipschitz continuous. Let E be

the set of x such that F 0(x) is di�erentiable at x. Then

m([a; b] n E ) = 0, F 0 is integrable on E \ [a; b] and∫
x2E\[a;b]

F 0(x) dm(x) = F (b)� F (a):

We saw how to prove this from two propositions. I sketched the

proof of the �rst one,

Suppose I is a non-empty interval and F : I ! R is Lip-

schitz continuous. Then there are Lipschitz continuous

functions G and H such that G is monotone increasing,

H is monotone decreasing and F = G + H.

last time.



Dini derivatives (1/9)
Today I'll sketch the proof of the second one,

Suppose I is a non-empty interval and F : I ! R is con-

tinuous and monotone. Then F is di�erentiable at x for

almost all x 2 I .

Even if you don't know anything about the possible

di�erentiability of a function you can still de�ne the Dini

derivatives

D+F (x) = lim sup
h&0

F (x + h)� F (x)

h
;

D+F (x) = lim inf
h&0

F (x + h)� F (x)

h
;

D�F (x) = lim sup
h%0

F (x + h)� F (x)

h

D�F (x) = lim inf
h%0

F (x + h)� F (x)

h
:



Dini derivatives (2/9)

The following are useful properties of the Dini derivatives.

I Suppose F is a function from an open interval in R to R.

Then D+F (x) � DF+(x) and D�F (x) � DF�(x). If F is

monotone increasing then 0 � D+F (x) � DF+(x) and
0 � D�F (x) � DF�(x).

I F is di�erentiable at x if and only if

D+F (x) = D+F (x) = D�F (x) = D�F (x) 2 R:

I If I is an interval and F : I ! R is continuous then the Dini

derivatives of F are all measurable.

The �rst two are easy. The last is more complicated. In fact the

continuity assumption is not needed, but it makes the proof

considerably simpler. The proof illustrates some useful tricks, so

I'll give it in full.



Dini derivatives (3/9)
It su�ces to prove measurability for one of the four Dini

derivatives. The other three can then be obtained by replacing

F (x) by F (�x), �F (x) or �F (�x). I'll prove it for DF+.

DF+(x) = lim sup
h!0

F (x + h)� F (x)

h

= inf
k2(0;+1)

sup
h2(0;k)

F (x + h)� F (x)

h
:

In�ma and suprema of countable collections of measurable sets

are measurable, but unfortunately (0;+1) and (0; k) are
uncountable. We need to get around this fact somehow. Let

y = sup
h2(0;k)\Q

F (x + h)� F (x)

h
:

Then

y � sup
h2(0;k)

F (x + h)� F (x)

h

because (0; k) \Q is a subset of (0; k).



Dini derivatives (4/9)
Suppose

y < sup
h2(0;k)

F (x + h)� F (x)

h
:

Then there is an h 2 (0; k) such that

y <
F (x + h)� F (x)

h
:

Another way to say this is that the set{
h 2 (0; k) :

F (x + h)� F (x)

h
> y

}
is non-empty. It's open by the continuity of F and every

non-empty subset of the reals contains a rational, so there is an

h 2 (0; k) \Q such that

y <
F (x + h)� F (x)

h



Dini derivatives (5/9)

y = sup
h2(0;k)\Q

F (x + h)� F (x)

h
;

h 2 (0; k) \Q and

y <
F (x + h)� F (x)

h
:

But this is imposssible so the assumption that

y < sup
h2(0;k)

F (x + h)� F (x)

h

was false and therefore

y = sup
h2(0;k)

F (x + h)� F (x)

h
;

i.e.

sup
h2(0;k)\Q

F (x + h)� F (x)

h
= sup

h2(0;k)

F (x + h)� F (x)

h
:



Dini derivatives (6/9)

sup
h2(0;k)\Q

F (x + h)� F (x)

h
= sup

h2(0;k)

F (x + h)� F (x)

h

so

DF+(x) = inf
k2(0;+1)

sup
h2(0;k)

F (x + h)� F (x)

h
:

= inf
k2(0;+1)

sup
h2(0;k)\Q

F (x + h)� F (x)

h
:

Let

z = inf
k2(0;+1)\Q

sup
h2(0;k)\Q

F (x + h)� F (x)

h
:

(0;+1) \Q is a subset of (0;+1) so

z � inf
k2(0;+1)

sup
h2(0;k)\Q

F (x + h)� F (x)

h



Dini derivatives (7/9)
If

z > inf
k2(0;+1)

sup
h2(0;k)\Q

F (x + h)� F (x)

h

then there is a k 2 (0+1) such that

z > sup
h2(0;k)\Q

F (x + h)� F (x)

h

Every non-empty open subset of the reals contains a rational

number so there is a j 2 (0; k) \Q. Then

(0; j) \Q � (0; k) \Q

so

sup
h2(0;j)\Q

F (x + h)� F (x)

h
� sup

h2(0;k)\Q

F (x + h)� F (x)

h

and therefore

z > sup
h2(0;j)\Q

F (x + h)� F (x)

h
:



Dini derivatives (8/9)

z = inf
k2(0;+1)\Q

sup
h2(0;k)\Q

F (x + h)� F (x)

h
;

j 2 (0; k) \Q, and

z > sup
h2(0;j)\Q

F (x + h)� F (x)

h
:

But this is impossible so

z = inf
k2(0;+1)

sup
h2(0;k)\Q

F (x + h)� F (x)

h
:

In other words,

D+F (x) = inf
k2(0;+1)\Q

sup
h2(0;k)\Q

F (x + h)� F (x)

h
:

Now we can use the fact that in�ma and suprema of countable

collections of measurable functions are measurable.



Dini derivatives (9/9)
Suppose F : [a; b]! R is monotone increasing and � > 0.

Then there is a C > 0 such that

m
({

x 2 [a; b] : D+F (x) � �
})
� C

F (b)� F (a)

�

m (fx 2 [a; b] : D+F (x) � �g) � C
F (b)� F (a)

�

m
({

x 2 [a; b] : D�F (x) � �
})
� C

F (b)� F (a)

�

m (fx 2 [a; b] : D�F (x) � �g) � C
F (b)� F (a)

�

If F is continuous then the inequalities above hold with

C = 1.

The proof is long and I won't give it here. We only need the

continuous case in order to prove the Fundamental Theorem of

Calculus. This would follow from Hardy-Littlewood if we already

had the Second Fundamental Theorem of Calculus.



Di�erentiability almost everywhere (1/2)
The proof that continuous monotone functions are di�erentiable

almost everywhere is long but the main ideas are:

I D+F (x) � D+F (x) and D�F (x) � D�F (x) for all x .

I If we can show that D+F (x) � D�F (x) and
D�F (x) � D+F (x) for all almost all x then F we can

conclude that F is di�erentiable for almost all x .

I If D+F (x) > D�F (x) then there are p; q 2 Q such that

D�F (x) < p < q < D+F (x):

I If we can show that m(Ap;q) = 0, where

Ap;q =
{
x : D�F (x) < p < q < D+F (x)

}
then m (

⋃
Ap;q) = 0 and D+F (x) � D�F (x) almost

everywhere.



Di�erentiability almost everywhere (2/2)

I Similarly, if we can show that m(Ap;q) = 0, where

Bp;q =
{
x : D+F (x) < p < q < D�F (x)

}
then m (

⋃
Bp;q) = 0 and D�F (x) � D+F (x) almost

everywhere.

I To show that Ap;q is null we �rst show that its average value

is bounded by p=q < 1 almost everywhere, i.e. that

1

2h
m(Ap;q \ (x � h; x + h)) �

p

q
:

This follows from the \Hardy-Littlewood" inequalities.

I The Lebesgue Di�erentiation Theorem says that this average

is equal to �Ap;q
(x) for almost all x . In other words, almost

all x are not in Ap;q.


