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The Lebesgue Di�erentiation Theorem
Last time we saw this variant of the First Fundamental Theorem:

Suppose f : [a; b]! R is integrable. Then

lim
h&0

1

h

∫
x2[y ;y+h]

f (x) dm(x) = f (y);

lim
h&0

1

h

∫
x2[y�h;h]

f (x) dm(x) = f (y);

lim
h&0

1

2h

∫
x2[y�h;y+h]

f (x) dm(x) = f (y)

for almost all x 2 [a; b].

The last bit is the one-dimensional version of the Lebesgue

Di�erentiation Theorem: For almost all x,

lim
r&0

1

m(B(y; r))

∫
x2B(y;r)

f (x) dm(x) = f (y):

I'll sometimes refer to the other parts as the Lebesgue

Di�erentiation Theorem too.



The Second Fundamental Theorem of Calculus (1/5)

Suppose F : [a; b] ! R is Lipschitz continuous. Then F

is di�erentiable at x for almost all x 2 [a; b] and∫
x2[a;b]

F 0(x) dm(x) = F (b)� F (a):

Suppose that F is di�erentiable at x for almost all x 2 [a; b]. We

can get ∫
x2[a;b]

F 0(x) dm(x) = F (b)� F (a):

as follows. If h0, h1, . . . are positive and tend to zero then the

functions

gj(x) =
F (x + hj)� F (x)

hj

converge for almost all x and tend to F 0(x). If F is Lipschitz with

Lipschitz constant K then jgj(x)j � K .



The Second Fundamental Theorem of Calculus (2/5)∫
x2[a;b]

K dm(x) < +1:

By the Dominated Convergence Theorem∫
x2[a;b]

F 0(x) dm(x) = lim
j!1

∫
x2[a;b]

gj(x) dm(x):

∫
x2[a;b]

gj(x) dm(x) =

∫
x2[a;b]

F (x + hj)� F (x)

hj
dm(x)

=
1

hj

[∫
x2[a;b]

F (x + hj) dm(x)�

∫
x2[a;b]

F (x) dm(x)

]

=
1

hj

[∫
x2[a+hj ;b+hj ]

F (x) dm(x)�

∫
x2[a;b]

F (x) dm(x)

]

=
1

hj

∫
x2[b;b+hj ]

F (x) dm(x)�
1

hj

∫
x2[a;a+hj ]

F (x) dm(x)



The Second Fundamental Theorem of Calculus (3/5)

If F is Lipschitz continuous then F is continuous and

lim
j!1

1

hj

∫
x2[a;a+hj ]

F (x) dm(x) = F (a)

and

lim
j!1

1

hj

∫
x2[b;b+hj ]

F (x) dm(x) = F (b)

You can use the Riemann integration version of the First

Fundamental Theorem of Calculus together with the fact that the

Lebesgue integral agrees with the Riemann integral where both

are de�ned. Or you can use Lebesgue version, i.e. the Lebesgue

Di�erentiation Theorem, but you might need to shift a and b

slightly and take a limit. Either way,

F (b)� F (a) =

∫
x2[a;b]

F 0(x) dm(x):



The Second Fundamental Theorem of Calculus (4/5)

The problem is to show that every Lipschitz continuous function

is di�erentiable almost everywhere and that the derivative is

integrable. We'll get this mostly from two propositions.

Proposition 10.3.1 says

Suppose I is a non-empty interval and F : I ! R is Lip-

schitz continuous. Then there are Lipschitz continuous

functions G and H such that G is monotone increasing,

H is monotone decreasing and F = G + H.

and Proposition 10.3.8 says

Suppose I is a non-empty interval and F : I ! R is con-

tinuous and monotone. Then F is di�erentiable at x for

almost all x 2 X.

We already know that Lipschitz continuous functions are

continuous. Also, the sum of two functions which are

di�erentiable almost everywhere is di�erentiable almost

everywhere.



The Second Fundamental Theorem of Calculus (5/5)

More miscellaneous bits we need are that the derivative of a

continuous function is measurable and that the derivatives of a

Lipschitz function are bounded everywhere. Bounded measurable

functions on a set of �nite measure are integrable, so F 0 is

integrable.

The hard part is proving the two propositions from the previous

slide. I won't give the full proof of either in lecture, but I will

sketch the proofs and describe some useful constructions.



Variation (1/2)
We de�ne the positive variation, negative variations and and total

variation of a function in a closed interval by

V+(a; b) = sup

n∑
j=1

max(0;F (xj)� F (xj�1));

V�(a; b) = inf

n∑
j=1

min(0;F (xj)� F (xj�1));

V (a; b) = sup

n∑
j=1

jF (xj)� F (xj�1)j:

The suprema and in�ma are over x0, x1, . . . , xn are such that

a = x0 � x1 � � � � � xn = b:

For general functions they could be in�nite but for Lipschitz

functions they're of absolute value at most K (b� a) where K is a

Lipschitz constant for F .



Variation (2/2)

The variations have the following properties:

I V+(a; b) � 0, V�(a; b) � 0 and V (a; b) � 0.

I if a � b � c then

V+(a; c) = V+(a; b) + V+(b; c);

V�(a; c) = V�(a; b) + V�(b; c);

V (a; c) = V (a; b) + V (b; c):

I V+(a; c) � V+(a; b) and V+(a; c) � V+(b; c). So V+(a; c) is
monotone increasing as a function of c and monotone

decreasing as a function of a. The same is true for V , while

V�(a; c) is monotone decreasing as a function of c and

monotone increasing as a function of a.

I V+(a; b)� V�(a; b) = V (a; b).

I V+(a; b) + V�(a; b) = F (b)� F (a).



Decomposition of Lipschitz Functions

One of the two propositions we wanted was

Suppose I is a non-empty interval and F : I ! R is Lip-

schitz continuous. Then there are Lipschitz continuous

functions G and H such that G is monotone increasing,

H is monotone decreasing and F = G + H.

From the properties of the V 's we can see that

G (x) =

{
1
2
F (w) + V+(w ; x) if x � w ;

1
2
F (w)� V+(x ;w) if x < w ;

H(x) =

{
1
2
F (w) + V�(w ; x) if x � w ;

1
2
F (w)� V�(x ;w) if x < w ;

works for any w 2 I .


