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First Fundamental Theorem of Calculus (1/5)

Here is our version of the First Fundamental Theorem of Calculus

for Lebesgue integration:

Suppose f : R! R is integrable and

F (y) =

∫
x2(�1;y)

f (x) d�(x):

Then F is continuous. For almost all y in R F is di�er-

entiable at y and F 0(y) = f (y).

I stated this last time with integration over (�1; y ]. Either
version is �ne. It never matters for Lebesgue integrals whether

you include the endpoints of an interval or not, since they have

measure zero. There are other measures, e.g. Dirac measures, on

R where you have to be more careful though.



First Fundamental Theorem of Calculus (2/5)
The following may be less familiar, but is equivalent:

Suppose f : [a; b]! R is integrable. Then

lim
h&0

1

h

∫
x2[y ;y+h]

f (x) dm(x) = f (y);

lim
h&0

1

h

∫
x2[y�h;h]

f (x) dm(x) = f (y);

and

lim
h&0

1

2h

∫
x2[y�h;y+h]

f (x) dm(x) = f (y)

for almost all x 2 [a; b].

The relation between these is

F (z)� F (y)

z � y
=

{
1
h

∫
x2[y ;y+h] f (x) dm(x) if z > y ;

1
h

∫
x2[y�h;y ] f (x) dm(x) if z < y ;

where h = jz � y j.



First Fundamental Theorem of Calculus (3/5)

Similarly, the usual version of the First Fundamental Theorem of

Calculus for Riemann integration is equivalent to

Suppose f : [a; b]! R is continuous. Then

lim
h&0

1

h

∫ y+h

y

f (x) dx = f (y)

for all y 2 [a; b),

lim
h&0

1

h

∫ y

y�h

f (x) dx = f (y)

for all y 2 (a; b], and

lim
h&0

1

2h

∫ y+h

y�h

f (x) dx = f (y)

for all y 2 (a; b).



Markov's Inequality (1/2)
The plan is to deduce the alternate version for Lebesgue integrals

from the alternate version for Riemann integrals plus a few other

pieces:
I Markov's Inequality
I The Hardy-Littlewood maximal inequality
I A density result for compactly supported continuous

functions

Markov's Inequality is Proposition 10.2.1 from the notes:

Suppose (X ;B; �) is a measure space, g : X ! [0;+1]
is integrable and � > 0. Then

�(E�) �
1

�

∫
x2X

g(x) d�(x)

where

E� = fx 2 X : g(x) � �g :

Roughly, the set where an integrable function is large must be

small.



Markov's Inequality (2/2)

Markov's Inequality is essentially trivial, but often useful. Recall

that

E� = fx 2 X : g(x) � �g :

De�ne f = ��E� . Then 0 � f (x) � g(x) for all x . So

��(E�) =

∫
x2X

f (x) d�(x) �

∫
x2X

g(x) d�(x)

Dividing by � gives

�(E�) �
1

�

∫
x2X

g(x) d�(x):



The Hardy-Littlewood Maximal Inequality

The Hardy-Littlewood Maximal Inequality, Proposition 10.2.5 in

the notes, is a variant of Markov's Inequality.

Suppose f : R ! R is integrable. For every � > 0 we

have

�(E�) �
1

�

∫
x2R

jf (x)j dm(x);

where

E� =

{
y 2 R : sup

h>0

1

h

∫
x2[y ;y+h]

jf (x)j dm(x) � �

}
:

The bound on the right hand side is the same as Hardy with

g = jf j, but the set E� on the left hand side is di�erent. This

inequality is much harder to prove than Markov's. The proof isn't

particularly long, but it's far from obvious. See the notes for

details.



The density result (1/3)

The third piece of our puzzle is the density result,

Proposition 10.2.6 in the notes:

Suppose (X ; T ) is a locally compact Hausdor� space and

� is a Radon measure on X . If f : X ! R is integrable

and � > 0 then there is a compactly supported continuous

function g : X ! R such that∫
x2X

jf (x)� g(x)j d�(x) < �:

This says that integrable functions can be approximated arbitrarily

well by compactly supported continuous functions, in some

appropriate sense. This sense can be described by a pseudometric

coming from the seminorm

khkL1(X ) =

∫
x2X

jh(x)j d�(x)



The density result (2/3)

A seminorm is a function on a vector space which satis�es all the

properties of a norm, except we allow non-zero vectors to have

zero norm.

From any seminorm we can construct a pseudometric, e.g.

dL1(X )(f ; g) = kf � gkL1(X ):

A pseudometric is a function which satis�es all the properties of a

metric, except we allow distinct points to have zero distance.

From a pseudometric we can construct balls and a topology, just

as for a metric. This topology is not Hausdor� unless our

pseudometric is a metric, but it is a topology.

The proposition on the previous slide says that the space of

compactly supported continuous functions on X is a dense subset

of the space of integrable functions, with the topology coming

from the L1(X ) seminorm, i.e. that the closure of the former

space is the latter space.



The density result (3/3)
A sketch of the proof is as follows:

I Any integrable function can be approximated arbitrarily well,

in the L1(X ) seminorm, by a semisimple function.

I Any semisimple function can be arbitrarily well by a simple

function.

I Every simple function is a linear combination of characteristic

functions.

I Any characteristic function can be approximated arbitrarily

well by a compactly supported continuous function.

The �rst three are essentially de�nitions. For the last one we use

the fact that our measure was assumed to be a Radon measure,

i.e. every Borel set has a compact subset which is not much

smaller than it and an open superset which is not much larger

than it. There is then a compactly supported continuous function

which is equal to 1 on the compact set and equal to 0 outside the

open set. This function is a good approximation, in the L1(X )
sense, to the characteristic function of the Borel set.



First Fundamental Theorem of Calculus (4/5)

We put these pieces together as follows. We're given an

integrable f . For any �; � > 0 we use the density result to �nd a

g such that ∫
x2R

jf (x)� g(x)j dm(x) < �

We use the First Fundamental Theorem of Calculus (Riemann

version) to get∣∣∣∣∣g(x)� 1

h

∫
s2[x ;x+h]

g(s) dm(s)

∣∣∣∣∣ < �

for su�ciently small h. We use Markov's Inequality to get

jf (x)� g(x)j < �

except on a set of measure at most �=�.



First Fundamental Theorem of Calculus (5/5)
We use the Hardy-Littlewood Maximal Inequality to get∣∣∣∣∣1h

∫
s2[x ;x+h]

f (s) dm(s)�
1

h

∫
s2[x ;x+h]

g(s) dm(s)

∣∣∣∣∣ < �

except on a set of measure at most �=�, for all su�ciently

small h. Now we have∣∣∣∣∣f (x)� 1

h

∫
s2[x ;x+h]

f (s) dm(s)

∣∣∣∣∣ < 3�

for all su�ciently small h, o� of a set of measure 2�=�. We have

this for every � > 0, so we get the inequality above o� of a set of

measure 0. It then follows that

lim
h!0+

1

h

∫
s2[x ;x+h]

f (s) dm(s) = f (x)

o� of this set of measure zero.


