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First Fundamental Theorem of Calculus (1/5)

Here is our version of the First Fundamental Theorem of Calculus
for Lebesgue integration:
Suppose f: R — R is integrable and
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Then F is continuous. For almost all y in R F is differ-
entiable at y and F'(y) = f(y).

| stated this last time with integration over (—oo, y|. Either
version is fine. It never matters for Lebesgue integrals whether
you include the endpoints of an interval or not, since they have
measure zero. There are other measures, e.g. Dirac measures, on
R where you have to be more careful though.



First Fundamental Theorem of Calculus (2/5)

The following may be less familiar, but is equivalent:
Suppose f: [a, b] — R is integrable. Then
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for almost all x € [a, b].
The relation between these is
F(2) = F) _ |5 Jxelyysn FE)dm(x) if 2>y,
z—y %fxe[yfh’y] f(x)dm(x) ifz<y,

where h= |z — y|.



First Fundamental Theorem of Calculus (3/5)

Similarly, the usual version of the First Fundamental Theorem of
Calculus for Riemann integration is equivalent to

Suppose f: [a, b] = R is continuous. Then
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Markov’s Inequality (1/2)
The plan is to deduce the alternate version for Lebesgue integrals
from the alternate version for Riemann integrals plus a few other
pieces:
» Markov's Inequality
» The Hardy-Littlewood maximal inequality
> A density result for compactly supported continuous
functions
Markov’s Inequality is Proposition 10.2.1 from the notes:
Suppose (X, B, u) is a measure space, g: X — [0, +o0]
is integrable and A > 0. Then
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where
Ex={x€e X:g(x)>A}.

Roughly, the set where an integrable function is large must be
small.



Markov’s Inequality (2/2)

Markov's Inequality is essentially trivial, but often useful. Recall
that
Ex={xeX:g(x)>A}.

Define f = Axg,. Then 0 < f(x) < g(x) for all x. So
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Dividing by A gives
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The Hardy-Littlewood Maximal Inequality

The Hardy-Littlewood Maximal Inequality, Proposition 10.2.5 in
the notes, is a variant of Markov's Inequality.

Suppose f: R — R is integrable. For every A\ > 0 we
have
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where
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The bound on the right hand side is the same as Hardy with
g = |f], but the set E, on the left hand side is different. This
inequality is much harder to prove than Markov's. The proof isn’t

particularly long, but it's far from obvious. See the notes for
details.



The density result (1/3)

The third piece of our puzzle is the density result,
Proposition 10.2.6 in the notes:
Suppose (X, T) is a locally compact Hausdorff space and
W is a Radon measure on X. If f: X — R is integrable
and e > 0 then there is a compactly supported continuous
function g: X — R such that
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This says that integrable functions can be approximated arbitrarily
well by compactly supported continuous functions, in some
appropriate sense. This sense can be described by a pseudometric
coming from the seminorm

1Al ) = / 01 da()



The density result (2/3)

A seminorm is a function on a vector space which satisfies all the
properties of a norm, except we allow non-zero vectors to have
Zero norm.

From any seminorm we can construct a pseudometric, e.g.
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A pseudometric is a function which satisfies all the properties of a
metric, except we allow distinct points to have zero distance.
From a pseudometric we can construct balls and a topology, just
as for a metric. This topology is not Hausdorff unless our
pseudometric is a metric, but it is a topology.

The proposition on the previous slide says that the space of
compactly supported continuous functions on X is a dense subset
of the space of integrable functions, with the topology coming
from the L1(X) seminorm, i.e. that the closure of the former
space is the latter space.



The density result (3/3)
A sketch of the proof is as follows:

> Any integrable function can be approximated arbitrarily well,
in the L}(X) seminorm, by a semisimple function.

> Any semisimple function can be arbitrarily well by a simple
function.

» Every simple function is a linear combination of characteristic
functions.

» Any characteristic function can be approximated arbitrarily
well by a compactly supported continuous function.

The first three are essentially definitions. For the last one we use
the fact that our measure was assumed to be a Radon measure,
i.e. every Borel set has a compact subset which is not much
smaller than it and an open superset which is not much larger
than it. There is then a compactly supported continuous function
which is equal to 1 on the compact set and equal to 0 outside the
open set. This function is a good approximation, in the L1(X)
sense, to the characteristic function of the Borel set.



First Fundamental Theorem of Calculus (4/5)

We put these pieces together as follows. We're given an
integrable f. For any X, e > 0 we use the density result to find a
g such that
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We use the First Fundamental Theorem of Calculus (Riemann
version) to get
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for sufficiently small h. We use Markov’s Inequality to get
1F(x) = g(x)I <A

except on a set of measure at most €/ .



First Fundamental Theorem of Calculus (5/5)
We use the Hardy-Littlewood Maximal Inequality to get
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except on a set of measure at most €/, for all sufficiently
small h. Now we have
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for all sufficiently small h, off of a set of measure 2¢/A. We have
this for every ¢ > 0, so we get the inequality above off of a set of
measure 0. It then follows that
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off of this set of measure zero.
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