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A topological lemma (1/2)

Suppose (X, T) is a locally compact Hausdorff topological
space and K € p(X) is compact, U € p(X) is open and
K C U. Then there is a continuous compactly supported
function g: X — [0, 1] such that g(x) =1 for all x € K
and g(x) =0 for all x € X\ U.

This is a variant of Urysohn's Lemma:
Suppose (X, T) is a normal topological space and A and
B are closed subsets of X such that ANB = @. Then
there is a continuous function f: X — [0, 1] such that
f(x)=0 forallx € Aand f(x) =1 for all x € B.

Compact Hausdorff spaces are both normal and locally compact.
If X is compact then the two are equivalent: just take B = K and
A=X\U.

To get the locally compact case, take a compact neighbourhood
Wy of x for each x € X.



A topological lemma (2/2)

W, is compact neighbourhood of x means W, is compact and
there is an open V4 such that x € V, and Vi, C W,. The Vi with
X € K are an open cover of K so there is a finite subcover
Voo s Vin- Then

Kcunvcvcw,

where V =J", Vi and W = |JZ; W,,. W is compact and
L=W\(UnV)is a closed subset of W. Applying Urysohn's
Lemma gives a continuous f: W — [0, 1] such that f(x) =1 if
x€e€Kandf(x)=0ifxe L If x¢ UthenxeLsof(x)=0.
We then extend f to a function g on X by g(x) = f(x) if x e W
and g(x) =0 if x ¢ W. This g is continuous.



Another topological lemma

Suppose (X, T) is a locally compact o-compact Hausdorff
topological space. Then there is a sequence Ky, K1, ... of
compact subsets such that K, C Ky, for all m and
U o Km = X.

m=0
X is o-compact. In other words, there are compact Ag, A1, ...,
such that X = U;OZO Am. X locally compact, so we have Vi, W,
as before. Define K, inductively, starting with Ko = @. A, U Ky
is compact. The Vi with x € A, U K, are an open cover of it so
there are Xm0, ..., Xm.n, Such that

Mm
AmU Km C Vin = Viny.
j=0

Set K1 = Ufi’o Wi ;. Then Vi, € Kipp1 and Vi, is open so



A measure theory lemma (1/3)

The following is like a Monotone Convergence Theorem for

measures:
Suppose B is a o algebra on a set X and g, f1, ...are

measures on (X, B) which are monotone in the sense that
for all E € B then

pi(E) < uk(E)
whenever j < k. Let

w(E) = lim pi(E).

J—00

Then w is a measure on (X, B) and

/ f(x)du(x) = lim / f(x) du;(x).
xeX xeX

J—o0



A measure theory lemma (2/3)

It's easy to see that u is a measure. First u(@) = 0. Suppose Eo,

Eq, ..., are disjoint elements of B. Then
00 00 0
00 o0
- kZJ';'Lw ) = kZ

It's also easy to check

/xex f(x) du(x) :J_ingo /xex f(x) duj(x).

when f is semisimple. There are Q, ¢ such f(x) = @(E) if
x€F€Q.



A measure theory lemma (3/3)

/X ) du() = 3 p(E(E) = 3 0l) fim ()

J—)
E€Q EcQ

= lim Z (E)ui(E) = lim /GX f(x) dij(x).

J—>oo
EeQ

The integral of any function is determined by integrals of
semisimple functions so we get

[ Feaut = tim [ 700 duyt)
for all f.



Uniqueness (1/2)

Suppose (X, T) is a locally compact Hausdorff space.
Suppose I is a linear transformation from the vector space
of continuous compactly supported functions from X to
R such that I(g) > 0 whenever g is such that g(x) > 0
for all x € X. Then there is at most one Radon measure
w on X such that

I(g) = / 909 du(x)

for all continuous compactly supported g.

Suppose w1 and wo are Radon measures such that

| ot =19)= [ gx) dua()
xeX xeX

for all continuous compactly supported g. Suppose K is compact,
U is open and K C U.



Uniqueness (2/2)
By our first topological lemma there is a continuous compactly
supported function g such that such that g(x) =1 for x € K and
g(x) =0 for x ¢ U. In other words, xx(x) < g(x) < xu(x) for
all x € U. Therefore

ul) = [ xtodm) < [ a6 dm() = 1(9)

xeX

z/ 9(x) duz(X)S/ xu(X) dpa(x) = p2(U).
xeX

xeX

Thus w1(K) < pa(U) whenever K is compact, U is open and

K C U. u; is a Radon measure so p1(U) = sup pu1(K), where the
supremum is over all compact subsets K of U so p1(U) < pa(U).
The same argument works with w1 and uo swapped, so

w2(U) < p1(U) and hence p1(U) = pa(U). @1 and po are both
Radon measures so u1(E) = inf u1(U) and pa(E) = inf uo(U) for
any Borel set E, where the infimum in both cases is over open
supersets U of E. The right hand sides are equal, so the left hand
sides are equal: wu1(E) = uo(E).



The Riesz Representation Theorem (1/3)

Suppose (X, T) is a locally compact, oc-compact Haus-
dorff topological space. Suppose | is a linear transfor-
mation from the vector space of continuous compactly
supported functions from X to R such that I1(g) > 0
whenever g(x) > 0 for all x € X. Then there is a unique
Radon measure u on X such that all continuous com-
pactly supported functions g are integrable and

/ 9(x) du(x) = 1(9).
xeX

Note that we already have uniqueness in this level of generality,
we just need existence.



The Riesz Representation Theorem (2/3)

Let Ko, K1, ...be as in the second topological lemma. By our
first topological lemma there are continuous h,: X — [0, 1] such
that h,(x) = 1if x € K, and h,(x) = 0 if x ¢ K_,. Define /,(g)
for compactly supported continuous g from K11 to R by

In(9) = I(ghn). By the weak version of the Riesz Representation
Theorem there's a measure u, on Knpy1 such that

fxeKn+1 9(x) dun(x) = I,(g). We can extend this measure to be
zero outside Kyy1, 50 [ oy 9(x) dun(x) = Is(g) for all compactly
supported continuous g from X to R. Our measure theory lemma
gives a measure u such that

/XEX f(X) dM(X) - nliﬂmoo [(EX f(X) d:u'n(X).



The Riesz Representation Theorem (3/3)

If g is compactly supported then it’s supported in some K,11 so
g = ghy for all k > n. Then I(g) = I(ghk) = Ik(g) and

k—o0 k—00

_ / _90) du(x).

I(g) = lim Ik(g) = lim /ex g(x) duk(x)



