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A topological lemma (1/2)

Suppose (X ; T ) is a locally compact Hausdor� topological

space and K 2 }(X ) is compact, U 2 }(X ) is open and

K � U. Then there is a continuous compactly supported

function g : X ! [0; 1] such that g(x) = 1 for all x 2 K

and g(x) = 0 for all x 2 X n U.

This is a variant of Urysohn's Lemma:

Suppose (X ; T ) is a normal topological space and A and

B are closed subsets of X such that A \ B = ?. Then

there is a continuous function f : X ! [0; 1] such that

f (x) = 0 for all x 2 A and f (x) = 1 for all x 2 B.

Compact Hausdor� spaces are both normal and locally compact.

If X is compact then the two are equivalent: just take B = K and

A = X n U.

To get the locally compact case, take a compact neighbourhood

Wx of x for each x 2 X .



A topological lemma (2/2)

Wx is compact neighbourhood of x means Wx is compact and

there is an open Vx such that x 2 Vx and Vx �Wx . The Vx with

x 2 K are an open cover of K so there is a �nite subcover

Vx1 ; : : : ;Vxm . Then

K � U \ V � V �W ;

where V =
⋃m
i=1 Vxi and W =

⋃m
i=1Wxi . W is compact and

L = W n (U \ V ) is a closed subset of W . Applying Urysohn's

Lemma gives a continuous f : W ! [0; 1] such that f (x) = 1 if

x 2 K and f (x) = 0 if x 2 L. If x =2 U then x 2 L so f (x) = 0.

We then extend f to a function g on X by g(x) = f (x) if x 2W

and g(x) = 0 if x =2W . This g is continuous.



Another topological lemma

Suppose (X ; T ) is a locally compact �-compact Hausdor�

topological space. Then there is a sequence K0, K1, . . . of

compact subsets such that Km � K �m+1 for all m and⋃1
m=0 Km = X.

X is �-compact. In other words, there are compact A0, A1, . . . ,

such that X =
⋃1
m=0 Am. X locally compact, so we have Vx , Wx

as before. De�ne Km inductively, starting with K0 = ?. Am [ Km

is compact. The Vx with x 2 Am [ Km are an open cover of it so

there are xm;0, . . . , xm;nm such that

Am [ Km � Vm =

nm⋃
j=0

Vm;j :

Set Km+1 =
⋃nm
j=0Wm;j . Then Vm � Km+1 and Vm is open so

Vm � K �m+1. Also Am � Km+1 and
⋃1
m=0 Am = X so⋃1

m=0 Km = X .



A measure theory lemma (1/3)

The following is like a Monotone Convergence Theorem for

measures:
Suppose B is a � algebra on a set X and �0, �1, . . . are

measures on (X ;B) which are monotone in the sense that

for all E 2 B then

�j(E ) � �k(E )

whenever j � k. Let

�(E ) = lim
j!1

�j(E ):

Then � is a measure on (X ;B) and∫
x2X

f (x) d�(x) = lim
j!1

∫
x2X

f (x) d�j(x):



A measure theory lemma (2/3)

It's easy to see that � is a measure. First �(?) = 0. Suppose E0,

E1, . . . , are disjoint elements of B. Then

�

(
1⋃
k=0

Ek

)
= lim

j!1
�j

(
1⋃
k=0

Ek

)
= lim

j!1

1∑
k=0

�j (Ek)

=

1∑
k=0

lim
j!1

�j (Ek) =

1∑
k=0

� (Ek) :

It's also easy to check∫
x2X

f (x) d�(x) = lim
j!1

∫
x2X

f (x) d�j(x):

when f is semisimple. There are Q, ' such f (x) = '(E ) if
x 2 E 2 Q.



A measure theory lemma (3/3)

∫
x2X

f (x) d�(x) =
∑
E2Q

'(E )�(E ) =
∑
E2Q

'(E ) lim
j!1

�j(E )

= lim
j!1

∑
E2Q

'(E )�j(E ) = lim
j!1

∫
x2X

f (x) d�j(x):

The integral of any function is determined by integrals of

semisimple functions so we get∫
x2X

f (x) d�(x) = lim
j!1

∫
x2X

f (x) d�j(x):

for all f .



Uniqueness (1/2)

Suppose (X ; T ) is a locally compact Hausdor� space.

Suppose I is a linear transformation from the vector space

of continuous compactly supported functions from X to

R such that I (g) � 0 whenever g is such that g(x) � 0

for all x 2 X. Then there is at most one Radon measure

� on X such that

I (g) =

∫
x2X

g(x) d�(x)

for all continuous compactly supported g.

Suppose �1 and �2 are Radon measures such that∫
x2X

g(x) d�1(x) = I (g) =

∫
x2X

g(x) d�2(x)

for all continuous compactly supported g. Suppose K is compact,

U is open and K � U.



Uniqueness (2/2)
By our �rst topological lemma there is a continuous compactly

supported function g such that such that g(x) = 1 for x 2 K and

g(x) = 0 for x =2 U. In other words, �K (x) � g(x) � �U(x) for
all x 2 U. Therefore

�1(K ) =

∫
x2X

�K (x) d�1(x) �

∫
x2X

g(x) d�1(x) = I (g)

=

∫
x2X

g(x) d�2(x) �

∫
x2X

�U(x) d�2(x) = �2(U):

Thus �1(K ) � �2(U) whenever K is compact, U is open and

K � U. �1 is a Radon measure so �1(U) = sup�1(K ), where the

supremum is over all compact subsets K of U so �1(U) � �2(U).
The same argument works with �1 and �2 swapped, so

�2(U) � �1(U) and hence �1(U) = �2(U). �1 and �2 are both

Radon measures so �1(E ) = inf �1(U) and �2(E ) = inf �2(U) for
any Borel set E , where the in�mum in both cases is over open

supersets U of E . The right hand sides are equal, so the left hand

sides are equal: �1(E ) = �2(E ).



The Riesz Representation Theorem (1/3)

Suppose (X ; T ) is a locally compact, �-compact Haus-

dor� topological space. Suppose I is a linear transfor-

mation from the vector space of continuous compactly

supported functions from X to R such that I (g) � 0

whenever g(x) � 0 for all x 2 X. Then there is a unique

Radon measure � on X such that all continuous com-

pactly supported functions g are integrable and∫
x2X

g(x) d�(x) = I (g):

Note that we already have uniqueness in this level of generality,

we just need existence.



The Riesz Representation Theorem (2/3)

Let K0, K1, . . . be as in the second topological lemma. By our

�rst topological lemma there are continuous hn : X ! [0; 1] such
that hn(x) = 1 if x 2 Kn and hn(x) = 0 if x =2 K �n+1. De�ne In(g)
for compactly supported continuous g from Kn+1 to R by

In(g) = I (ghn). By the weak version of the Riesz Representation

Theorem there's a measure �n on Kn+1 such that∫
x2Kn+1

g(x) d�n(x) = In(g). We can extend this measure to be

zero outside Kn+1, so
∫
x2X

g(x) d�n(x) = In(g) for all compactly

supported continuous g from X to R. Our measure theory lemma

gives a measure � such that∫
x2X

f (x) d�(x) = lim
n!1

∫
x2X

f (x) d�n(x):



The Riesz Representation Theorem (3/3)

If g is compactly supported then it's supported in some Kn+1 so

g = ghk for all k > n. Then I (g) = I (ghk) = Ik(g) and

I (g) = lim
k!1

Ik(g) = lim
k!1

∫
x2X

g(x) d�k(x)

=

∫
x2X

g(x) d�(x):


