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Lebesgue integration
We have a whole theory of integration on measure spaces, but so

far our only examples of measure spaces are rather trivial, e.g.

counting measure or Dirac measure.

The most commonly used measure space is (Rn;B;m), where B
is the Lebesgue �-algebra on Rn and m is the Lebesgue measure.

Let's just consider n = 1 for the moment.

B is a superset of the Borel �-algebra, which in turn is a superset

of the Jordan (Boolean) algebra, the completion of I. The

Lebesgue measure m is an extension of the Jordan content, i.e. if

E 2 J then the Lebesgue measure of E , m(E ), is equal to its

Jordan content �J (E ). In other words, (R;B;m) is a re�nement

of (R;J ; �J ).
The Lebesgue integral is also an extension of the Riemann

integral, in the sense that if g is Riemann integrable then it's

Lebesgue integrable, i.e. integrable with respect to (R;B;m) and∫
x2R

g(x) dm(x) is equal to the Riemann integral of g. In

particular, compactly supported continuous functions are

Lebesgue integrable.



Introducing the Riesz Representation Theorem
There are several ways to obtain Lebesgue measure, all of which

are messy. We'll do it in a way which automatically gives the

Lebesgue integral as an extension of the Riemann integral. This

uses the Riesz Representation Theorem:

Suppose (X ; T ) is a locally compact, �-compact Haus-

dor� topological space. Suppose I is a linear transfor-

mation from the vector space of continuous compactly

supported functions from X to R such that I (g) � 0

whenever g(x) � 0 for all x 2 X. Then there is a unique

Radon measure � on X such that all continuous com-

pactly supported functions g are integrable and∫
x2X

g(x) d�(x) = I (g):

The function I taking each continuous compactly supported

function to its Riemann integral is a linear transformation such

that I (g) � 0 whenever g � 0, so the theorem applies.



Other applications of the theorem (1/2)

We're mostly interested in Riemann integral case, where the

theorem gives us the existence of Lebesgue measure, but there

are other important applications:

I There's an analogue of Riemann integration in Rn for n > 1.

We'll see this in a couple of weeks. The Riesz

Representation Theorem means that once we have an

analogue of Riemann integration in Rn we get an analogue of

Lebesgue integration in Rn without further work.

I There are other types of integral of interest in Rn, e.g.

surface integrals. The RRT allows us to get all the useful

properties of the Lebesgue integral, e.g. the Monotone

Convergence Theorem, Fatou's Lemma or the Dominated

Convergence Theorem, for these integrals, if we know how to

de�ne them on compactly supported continuous functions.



Other applications of the theorem (2/2)

I Suppose V is a real-valued random variable. Its cumulative

probability distribution is the function

FV (x) = P(V � x):

We can de�ne the Riemann-Stieltjes integral of functions on

R by mimicking the construction of the Riemann integral,

but using the di�erence of the FV values at the endpoints of

the interval in place of its length. The Riesz Representation

Theorem gives us a corresponding measure �V on R and a

corresponding integral, called the Lebesgue-Stieltjes integral.

The probabilistic interpretation of this integral is that∫
x2R

g(x) d�V (x)

is the expected value of g(V ).



Comments on the proof

The proof is long. To break it up a bit I've separated out the case

of compact X , and separated the existence of � from its

uniqueness. The hard part is existence in the compact case.

Most of the proof not worth knowing in detail. In principle it gives

you a construction of Lebesgue measure, but you never want to

use this construction, only the fact that Lebesgue measure is a

Radon measure which extends Jordan content and that the

corresponding integral extends the Riemann integral.

I'll give a sketch of the proof next time, but even the sketch is

not worth committing to memory. There are a few concepts

which are used which are worth remembering, especially

semicontinuity. I've put the semicontinuity results in their own

section, before the proof.



Semicontinuity (1/5)

Suppose (X ; T ) is a topological space and f : X ! R is a

function. f is said to be lower semicontinuous if f �((a;+1)) 2 T
for all a 2 R. f is said to be upper semicontinuous if

f �((�1; b)) 2 T for all b 2 R.

There are various ways to think about semicontinuous functions.

For example, there's a topology T+ on R consisting of the sets of

the form (a;+1), ? and R. It's not a very nice topology. It's

not Hausdor�, for example, but it is a topology. It's a weaker

topology than the usual one. f is lower semicontinuous if and

only if it is continuous as a function from (X ; T ) to (R; T+). This
point of view has some uses, e.g. if f is continuous with respect

to the usual (metric) topology then it is semicontinuous. Or if

(X ; TX ) and (Y ; TY ) are topological spaces, g : X ! Y is

continuous and f : Y ! R is lower semicontinuous then f � g is

lower semicontinuous.



Semicontinuity (2/5)

There's another topology T� on R consisting of the sets of the

form (�1; b), ? and R. f is upper semicontinuous if and only if

it is continuous as a function from (X ; T ) to (R; T�).
T+ [ T� is not a topology on R, but it does generate a topology,

because any set of subsets generates a topology. In fact the

topology that T+ [ T� generates is the usual (metric) topology

on R. It contains (a;+1) \ (�1; b) = (a; b) for any a; b 2 R,

and therefore contains every union of sets of the form (a; b), i.e.
every open set in the usual topology.

It follows that f is continuous, with respect to the usual topology,

if and only if is both upper and lower semicontinuous. You can

also prove this directly from the de�nition, which is what I've

done in the notes. Sometimes it's convenient to prove a function

is continuous by �rst proving it's lower semicontinuous and then

proving it's upper semicontinuous. That's like proving an equation

by proving two inequalities.



Semicontinuity (3/5)
I haven't given you and examples yet, but the following

proposition gives plenty of them:

Suppose (X ; T ) is a topological space, E 2 }(X ) and �E
is the characteristic function of E, i.e.

�E (x) =

{
1 if x 2 E ;

0 if x =2 E :

Then �E is lower semicontinuous if and only if E is open.

�E is upper semicontinuous if and only if E is closed.

The \only if" is easy:

x 2 E , �E (x) = 1, �E (x) 2 (1=2;+1), x 2 ��
E
((1=2;+1)):

��
E
((1=2;+1)) is open if �E is lower semicontinuous. Similarly,

x 2 XnE , �E (x) = 0, �E (x) 2 (�1; 1=2), x 2 ��
E
((�1; 1=2)):

��
E
(�1; 1=2)) is open if �E is upper semicontinuous.



Semicontinuity (4/5)

The \if" isn't much harder.

��
E
((a;+1)) =


? if a � 1;

E if 0 � a < 1;

X if a < 0:

In each case ��
E
((a;+1)) is open if E is open.

��
E
((�1; b)) =


? if b � 0;

X n E if 0 < b � 1;

X if b > 1:

In each case ��
E
((�1; b)) is open if E is closed.



Semicontinuity (5/5)

Linear combinations of continuous functions are continuous.

Linear combinations of upper/lower semicontinuous functions

needn't be upper/lower semicontinuous. For example �f is lower

semicontinuous if and only if f is upper semicontinuous, and vice

versa. Linear combinations of upper/lower semicontinuous

functions with non-negative coe�cients are upper/lower

semicontinuous though.

Suppose g =
∑

m

i=1 ci fi . Then

g�((a;+1)) =
⋃ m⋂

i=1

f �
i
((�i ;+1))

g�((�1; b)) =
⋃ m⋂

i=1

f �
i
((�1; �i));

where the �rst union is over �'s such that
∑

m

i=1 ci�i = a and the

second union is over �'s such that
∑

m

i=1 ci�i = b.


