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Convergence Theorems
We had three main theorems about the interchange of limits and

sums:

1. The Monotone Convergence Theorem

2. Fatou's Lemma

3. The Dominated Convergence Theorem

Each of these applied to limits of nets, not just of sequences.

There are three main theorems about the interchange of limits

and integrals over measure spaces:

1. The Monotone Convergence Theorem

2. Fatou's Lemma

3. The Dominated Convergence Theorem

These only work over measure spaces, not content spaces. That's

the main reason for introducing measure spaces. These theorem

work for sequences, but not generally for nets (or �lters). The

MCT for integrals has a long proof, using the corresponding

theorem for sums and measures. The other two theorems have

shorter proofs, which are almost identical to those for sums.



Monotone Convergence Theorem (1/6)
Suppose (X ;B; �) is a measure space and f : N � X !

[0;+1] is a function such that

I fn(x) is an integrable function of x for each n 2 N,

and
I fn(x) is a monotone increasing sequence in n for

each x 2 X.

Then

lim
m!1

∫
x2X

fm(x) d�(x) =

∫
x2X

lim
m!1

fm(x) d�(x):

The second condition above implies that limm!1 fm(x) exists, so
the integrand on the right is well de�ned. It's integrable because

for functions with values in [0;+1] integrable and measurable are

the same, and limits of measurable functions are measurable.

The proof of the Monotone Convergence Theorem for integrals is

based on the Monotone Convergence Theorem for sums and the

Monotone Convergence Theorem for measures.



Monotone Convergence Theorem (2/6)

fm(x) � sup
n2N

fn(x) = lim
n!1

fn(x)

for all m 2 N. The equation between the supremum and the limit

follows from the monotonicity assumption on f . Therefore∫
x2X

fm(x) d�(x) �

∫
x2X

lim
n!1

fn(x) d�(x):

Taking the supremum over all m 2 N we get

sup
m2N

∫
x2X

fm(x) d�(x) �

∫
x2X

lim
n!1

fn(x) d�(x):

If m � n then fm(x) � fn(x) for all x 2 X by the monotonicity

assumption so∫
x2X

fm(x) d�(x) �

∫
x2X

fn(x) d�(x)



Monotone Convergence Theorem (3/6)∫
x2X

fm(x) d�(x) �

∫
x2X

fn(x) d�(x)

so
∫
x2X

fm(x) d�(x) is a monotone sequence and therefore

lim
m!1

∫
x2X

fm(x) d�(x) = sup
m2N

∫
x2X

fm(x) d�(x):

Thus

lim
m!1

∫
x2X

fm(x) d�(x) �

∫
x2X

lim
n!1

fn(x) d�(x):

The name of the variable in the limit is irrelevant, so

lim
m!1

∫
x2X

fm(x) d�(x) �

∫
x2X

lim
m!1

fm(x) d�(x):

Now we have half of what we want.



Monotone Convergence Theorem (4/6)
Suppose g is a semisimple function such that

g(x) � limm!1 fm(x) for all x 2 X . In other words, there is a

countable partition Q � B of X such that }([0;+1]) � g��(B):
Then, as we've seen, there is a ' : Q ! [0;+1] such that

g(x) = '(E ) when x 2 E . Suppose � 2 (0; 1). Then

lim
m!1

fm(x) = sup
m!1

fm(x) � g(x) = '(E ) > �'(E )

for all x 2 E . The last inequality requires '(E ) 6= 0, which we'll

assume from now until further notice. De�ne

Fm;E = fx 2 E : fm(x) > �'(E )g:

Then Fm;E � Fn;E whenever m � n and
⋃
m2N Fm;E = E . It

follows from the Monotone Convergence Theorem for measures,

Theorem 7.6.7, that

lim
m!1

�(Fm;E ) = �(E ):



Monotone Convergence Theorem (5/6)
Let

hm(x) =

{
�'(E ) if x 2 Fm;E ;

0 otherwise:

Then fm(x) � hm(x) for all x 2 X so∫
x2X

fm(x) d�(x) �

∫
x2X

hm(x) d�(x) =
∑
E2Q

�'(E )� (Fm;E ) :

The sum is over all E and we've been assuming '(E ) 6= 0, but

that's okay since the E 's for which '(E ) = 0 don't contribute to

any of the sums or integrals. Now

lim
m!1

∑
E2Q

�'(E )�(Fm;E ) =
∑
E2Q

lim
m!1

�'(E )�(Fm;E )

=
∑
E2Q

�'(E )�(E ) = �

∑
E2Q

'(E )�(E )

= �

∫
x2X

g(x) d�(x):



Monotone Convergence Theorem (6/6)
The interchange of the sum and limit one the previous slide is

justi�ed by the Monotone Convergence Theorem for sums,

Theorem 6.3.1. It follows that

lim
m!1

∫
x2X

fm(x) d�(x) � �

∫
x2X

g(x) d�(x)

for all � 2 (0; 1) and hence, taking the limit as � tends to 1 from

below,

lim
m!1

∫
x2X

fm(x) d�(x) �

∫
x2X

g(x) d�(x):

This is true for all simple g such that g(x) � limm!1 fm(x) so
the limit on the left is greater than or equal to the supremum

over all such g, i.e.

lim
m!1

∫
x2X

fm(x) d�(x) �

∫
x2X

lim
m!1

fm(x) d�(x):

=

∫
x2X

lim
m!1

fm(x) d�(x):

We already have the reverse inequality, so both sides are equal.



Fatou's Lemma (1/3)

Suppose (X ;B; �) is a measure space and f : N � X !

[0;+1] is a function such that fm(x) is integrable as a

function of x for each m 2 N. Then∫
x2X

sup
m2N

inf
n�m

fn(s) d�(x) � sup
m2N

inf
n�m

∫
x2X

fn(s) d�(x):

De�ne g : N� X ! [0;+1] by gm(x) = infn�m fn(x). If m � n

then

fp 2 N : p � ng � fp 2 N : p � mg

and so infp�m fp(x) � infp�n fp(x). In other words, if m � n then

gm(x) � gn(x). It follows from the Monotone Convergence

Theorem that∫
x2X

lim
m!1

gm(x) d�(x) = lim
m!1

∫
x2X

gm(x) d�(x):



Fatou's Lemma (2/3)∫
x2X

lim
m!1

gm(x) d�(x) = lim
m!1

∫
x2X

gm(x) d�(x):

These are monotone sequences so the limit is the same as the

supremum and therefore∫
x2X

sup
m2N

gm(x) d�(x) = sup
m2N

∫
x2X

gm(x) d�(x):

Now if m � n then gm(x) = infp�m fp(x) � fn(x) so∫
x2X

gm(x) d�(x) �

∫
x2X

fn(x) d�(x):

This holds for all n � m so∫
x2X

gm(x) d�(x) � inf
n�m

∫
x2X

fn(x) d�(x)

and

sup
m2N

∫
x2X

gm(x) d�(x) � sup
m2N

inf
n�m

∫
x2X

fn(x) d�(x):



Fatou's Lemma (3/3)
Combining

sup
m2N

∫
x2X

gm(x) d�(x) � sup
m2N

inf
n�m

∫
x2X

fn(x) d�(x)

with the equation∫
x2X

sup
x2X

gm(x) d�(x) = sup
m2N

∫
x2X

gm(x) d�(x)

obtained earlier, we �nd that∫
x2X

sup
m2N

gm(x) d�(x) � sup
m2N

inf
n�m

∫
x2X

fn(x) d�(x);

or, in view of how g was de�ned,∫
x2X

sup
m2N

inf
n�m

fn(x) d�(x) � sup
m2N

inf
n�m

∫
x2X

fn(x) d�(x):



Dominated Convergence Theorem (1/4)

Suppose (X ;B; �) is a measure space and f : N�X ! R

is a function and g : X ! [0;+1] is a function such that

lim
m!1

fm(x)

exists for all x 2 X, fm(x) is integrable as a functions of

x for each m 2 N,∫
x2X

g(x) d�(x) < +1

and

jfm(x)j � g(x)

for all m 2 N. Then

lim
m!1

∫
x2X

fm(x) d�(x) =

∫
x2X

lim
m!1

fm(x) d�(x):



Dominated Convergence Theorem (2/4)

De�ne

hm(x) = g(x) + fm(x):

Then hm(x) � 0 for all m 2 N and x 2 X . By Fatou's Lemma,∫
x2X

sup
m2N

inf
n�m

hn(x) d�(x) � sup
a2N

inf
n�m

∫
x2X

hn(x) d�(x):

Now

sup
m2N

inf
n�m

hn(x) = g(x) + sup
m2N

inf
n�m

fn(x)

= g(x) + lim
m!1

fm(x):

Also,∫
x2X

hm(x) d�(x) =

∫
x2X

g(x) d�(x) +

∫
x2X

fm(x) d�(x)



Dominated Convergence Theorem (3/4)

sup
m2N

inf
n�m

∫
x2X

hn(x) d�(x) =

∫
x2X

g(x) d�(x)

+ sup
m2N

inf
n�m

∫
x2X

fn(x) d�(x):

Therefore∫
x2X

g(x) d�(x) +

∫
x2X

lim
m!1

fm(x) d�(x)

�

∫
x2X

g(x) d�(x) + sup
m2N

inf
n�m

∫
x2X

fn(x) d�(x)

Because
∫
x2X

g(x) d�(x) < +1 we can cancel it to get∫
x2X

lim
m!1

fm(x) d�(x) � sup
m2N

inf
n�m

∫
x2X

fn(x) d�(x)



Dominated Convergence Theorem (4/4)
We can apply the same argument with �fm(x) in place of fm(x)
to get∫

x2X

lim
m!1

�fm(x) d�(x) � sup
m2N

inf
n�m

∫
x2X

�fm(x) d�(x);

or, equivalently,

inf
m2N

sup
n�m

∫
x2X

fm(x) d�(x) �

∫
x2X

lim
m!1

fm(x):

It follows that

inf
m2N

sup
n�m

∫
x2X

fn(x) d�(x) � sup
m2N

inf
n�m

∫
x2X

fn(x) d�(x)

and therefore limm!1

∫
x2X

fm(x) d�(x) exists and is equal to

their common value. So

lim
m!1

∫
x2X

fm(x) d�(x) =

∫
x2X

lim
m!1

fm(x) d�(x):


