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Upper and lower integrals

Last time we found an alternate characterisation of integrability.

Suppose (X ;B; �) is a content/measure space, Y �

[�1;+1] and g : X ! Y . Then∫
x2X

g(x) d�(x) �

∫
x2X

g(x) d�(x):

g is integrable with respect to (X ;B; �) if and only if also∫
x2X

g(x) d�(x) �

∫
x2X

g(x) d�(x)

and both the upper and lower integrals belong to Y . In

that case the integral of g is their common value.

We'll use this in a variety of ways.



Completions (1/3)

One use of the upper and lower integral criterion for integrability

is to compare integrability for a content/measure space and its

completion.

Suppose (X ;B; �) is a content/measure space and

(X ;By; �y) is its completion. Suppose Y � [�1;+1].
Then g : X ! Y is integrable with respect to (X ;By; �y)
if and only if it is integrable with respect to (X ;B; �).
The two integrals are then equal.

Half of this isn't really new. (X ;By; �y) is a re�nement of

(X ;B; �), so g is integrable with respect to (X ;By; �y) if it is
integrable with respect to (X ;B; �). The integrals are equal in

this case. This was a theorem from Lecture 48. The new part is

that g is integrable with respect to (X ;B; �) if it is integrable
with respect to (X ;By; �y). This direction doesn't work for

re�nements in general, only for completions.



Completions (2/3)

The idea of the proof is that simple/semisimple functions with

respect (X ;By) may not be simple/semisimple functions with

respect to (X ;B), but they can be approximated arbitrarily closely

from below or from above by them. The approximation is in the

sense that the integrals can be made arbitrarily close. It then

follows that the upper and lower integrals with respect to (X ;By)
are the same as those with respect to (X ;B). From the theorem

then the integrals are also the same.

The content space version is easier, since simple functions are

linear combinations of characteristic functions: g =
∑m

i=1 ci�Ei
.

For a single characteristic function �F where F 2 By we can �nd,

for any � > 0, sets D;H 2 B such that F4H � D and �(D) < �.

Let E = H nD and G = H [D. Then E � F � G so

�E (x) � �F (x) � �G (x).



Completions (3/3)

If E = H nD and G = H [D then G = E [D so

�(G ) � �(E ) + �(D) < �(E ) + �. So∫
x2X

�F (x) d�
y(x) = �y(F ) < �(E ) + � =

∫
x2X

�E (x) d�(x) + �∫
x2X

�F (x) d�
y(x) = �y(F ) > �(G ) + � =

∫
x2X

�G (x) d�(x)� �

We can extend this to linear combinations. There are some minor

complications due to working in a subset of [�1;+1] rather
than R, and from the presence of sets E 2 Q with �(E ) = +1 if

�(X ) = +1.

There are some extra complications when we move from content

spaces to measure spaces. For example, every semisimple function

is a countable linear combination of characteristic functions, but

not every countable linear combination of characteristic functions

is semisimple! I won't give the details here.



The Riemann integral

The Riemann integral of a function f : R to R is de�ned to be its

integral with respect to the content space (R; I; �I).
The preceding theorem shows that we'd get the same thing from

(R;J ; �J ) though. This may not look like the familiar Riemann

integral but the upper and lower integrals are just the upper and

lower Darboux integrals, so it's the same.

At this point almost all of the properties of the Riemann integral

are consequences of things we've prove in more generality, e.g.

monotonicity, linearity, etc. There's one exception though!



Compactly supported continuous functions (1/2)
All compactly supported continuous functions are Rie-

mann integrable.

What does compactly supported mean? The support of g is the

set

g�(R n f0g):

x belongs to the support of g if and only if it has no

neighbourhood in which g is identically zero. g is said to be

compactly supported if its support is compact. This makes sense

for real valued functions on any topological space.

Note that plenty of functions are Riemann integrable without

being continuous, e.g. �C where C is the Cantor set is

discontinuous at every point in C , so at uncountably many points,

but is Riemann integrable! It turns out that all Riemann

integrable functions are (essentially) compactly supported though.

Not every compactly supported function is Riemann integrable.

�[0;1]\Q is compactly supported but not Riemann integrable.



Compactly supported continuous functions (2/2)
All compactly supported continuous functions are Rie-

mann integrable.

Why? We can approximate such functions arbitrarily well by

simple functions with respect to (R; I). The support of g is

compact, so bounded, so contained in an interval [�r ; r ]. We

take a partition Q with (�1;�r), (r ;+1) and 2n intervals of

length r=n in [�r ; r ]. De�ne f ; h : R! R by f (x) = infy2E g(y)
and h(x) = supz2E g(z), where E is the unique element of Q

containing x . The lower integral is at least
∫
x2R

f (x) d�(x) and
the upper integral is at most

∫
x2R

h(x) d�(x).∫
x2R

h(x) d�(x) �

∫
x2R

f (x) d�(x) + 2nr sup
E2Q

sup
y ;z2E

(g(z)� g(y)):

g is continuous on the compact set [�r ; r ] so is uniformly

continuous, so we can make supE2Q supy ;z2E (g(z)� g(y)) as
small as we want by choosing n large enough.



Measurable functions (1/2)

Suppose (X ;B) is a measurable space, i.e. that B is a �-algebra

on X . Suppose (Y ; T ) is topological space (but really we only

care about Y = [0;+1] or Y = R
n, usually with n = 1). Then

g : X ! Y is called measurable if BY � g��(B) where BY is the

Borel �-algebra on Y . Equivalently, g is measurable if and only if

f �(E ) 2 B for every Borel set E in Y .

I If f is continuous and g is measurable then f � g is

measurable.

I If f is measurable then jf j is also measurable.

I (Finite) linear combinations of measurable functions are

measurable.

I (Finite) products of measurable functions are measurable.

I If f is a sequence of measurable functions then supn2N fn,

infn2N fn and limn!1 fn are all measurable, assuming they

exist.



Measurable functions (2/2)

We saw with real valued sums that summability is equivalent to

absolute summability. This is de�nitely not true for integrals, but

it is true if we restrict our attention to measurable functions with

respect to the completion of a measure space. As before, one

direction follows from a version of the comparison test:

Suppose (X ;B; �) is a measure space. Suppose

f ; g : X ! R are measurable functions such that jf (x)j �
g(x) for almost all x 2 X. If∫

x2X

g(x) d�(x) < +1

then f is integrable.

That absolute integrability implies integrability for measurable

function is the special case f = g. There are counter-examples if

we drop the measurability assumption. The reverse direction is

harder.


