
MAU22200 Lecture 49

John Stalker

Trinity College Dublin

28 February 2022



Almost everywhere

A statement is said to hold for almost all points in a

content/measure space if there is a set of content/measure zero

in the complement of which it holds.

For an uninteresting example, a statement holds for almost all x

with respect to counting measure if and only if it holds for all x .

For a more interesting example, for almost all x 2 R there is a 7

somewhere in the decimal expansion of x . The content here can

be taken to be Jordan content. The proof of this closely follows

the proof that the Cantor set has content zero, since the Cantor

set is the set of points in [0; 1] which have no 1 in their trinary

expansion.

Still sticking to Jordan content, it's not true that almost every

real number is irrational. This will be true of Lebesgue measure,

which we will see after the break.



Functions which agree almost everywhere (1/3)

Suppose (X ;B; �) is a content/measure space, Y �

[�1;+1], and g; h : X ! Y are such that g(x) = h(x)
for almost all x 2 X. If g integrable then so is h and∫

x2X
g(x) d�(x) =

∫
x2X

h(x) d�(x):

The hypothesis that g(x) = h(x) almost everywhere means that

there is an E 2 B with �(E ) = 0 such that g(x) = h(x) for all
x 2 X n E . With notation as in the de�nition of the integral,

suppose T 2 R��
g (E), i.e. that R�

g(T ) 2 E . Let V = R�
g(T ).

Then V 2 E so there is Q 2 P such that �(Q) � V . Let R be

the common re�nement of Q and fE ;X n Eg. If w 2 �(R) then
w 2 �(Q) and so w 2 V . So �(R) � V . Also �(R) 2 E . For
w 2 �(R) we have E 2 BR so

∑
x2E w(x) = �(E ) = 0 and

w(x) = 0 for all x 2 E and hence∑
x2E g(x)w(x) = 0 =

∑
x2E h(x)w(x).



Functions which agree almost everywhere (2/3)

On the other hand, we have g(x) = h(x) for x 2 X n E so∑
x2XnE

g(x)w(x) =
∑

x2XnE

h(x)w(x):

Then

Rg(w) =
∑
x2X

g(x)w(x)

=
∑
x2E

g(x)w(x) +
∑

x2XnE

g(x)w(x)

=
∑
x2E

h(x)w(x) +
∑

x2XnE

h(x)w(x)

=
∑
x2X

h(x)w(x) = Rh(w):

So Rg(w) = Rh(w) for all w 2 �(R).



Functions which agree almost everywhere (3/3)
Let S = Rh�(�(R)). If w 2 �(R) then Rh(w) 2 S so w 2 R�

h(S).
Therefore �(R) � R�

h(S). �(R) 2 E and E is upward closed so

R�
h(S) 2 E and hence S 2 R��

h (E). If z 2 S then z = Rh(w) for
some w 2 �(R). Then z = Rg(w). �(R) � V so w 2 V and

hence z = Rg(w) 2 T , since V = R�
g(T ). This holds for all z 2 S

so S � T . From this and S 2 R��
h (E) it follows that T 2 R��

h (E),
since R��

h (E) is upward closed. T was an arbitrary element of

R��
g (E) so R��

g (E) � R��
h (E). The same argument with the roles

of g and h reversed gives R��
h (E) � R��

g (E), so

R��
g (E) = R��

h (E):

Therefore R��
g (E) converges if and only if R��

h (E) converges, in
which case the limits are the same. In terms of integrals this

means that g is integrable if and only if h is, in which case∫
x2X

g(x) d�(x) =

∫
x2X

h(x) d�(x):



Lower and upper integrals (1/2)

Suppose (X ;B; �) is a content/measure space, Y � [�1;+1]
and g : X ! Y is a function.

The lower integral of g with respect to (X ;B; �),∫
x2X

g(x) d�(x);

is the supremum of all integrals
∫
x2X f (x) d�(x) where f ranges

over the simple/semisimple functions such that f (x) � g(x) for
almost all x 2 X .

The upper integral of g with respect to (X ;B; �),∫
x2X

g(x) d�(x);

is the in�mum of all integrals
∫
x2X h(x) d�(x) where h ranges

over the simple/semisimple functions such that g(x) � h(x) for
almost all x 2 X .



Lower and upper integrals (2/2)

The \for almost all x 2 X" is natural in since we only really care

about the integrals. It's also necessary to make the following

theorem work:
Suppose (X ;B; �) is a content/measure space, Y �

[�1;+1] and g : X ! Y . Then∫
x2X

g(x) d�(x) �

∫
x2X

g(x) d�(x):

g is integrable with respect to (X ;B; �) if and only if also∫
x2X

g(x) d�(x) �

∫
x2X

g(x) d�(x)

and both the upper and lower integrals belong to Y . In

that case the integral of g is their common value.

This criterion is easier to work with than the de�nition.



Sketch of the proof (1/3)
The proof is made up of two parts, one general and one speci�c

to integration.

Suppose E is a �lter on a set X , Y � [�1;+1], and
r : X ! Y is a function. Then

sup
V2E

inf
w2V

r(w) � inf
V2E

sup
w2V

r(w)

in [�1;+1]. r��(E) is convergent in Y if and only if

inf
V2E

sup
w2V

r(w) 2 Y ;

sup
V2E

inf
w2V

r(w) 2 Y ;

and

inf
V2E

sup
w2V

r(w) � sup
V2E

inf
w2V

r(w):

In this case their common value is the limit of r��(E).



Sketch of the proof (2/3)

The convergence criterion on the preceding slide is the �lter

version of one we've already seen for sequences and nets. We

apply it to r = Rg and E as in the de�nition of the integral. To

do that we need to identify infV2E supw2V Rg(w) and
supV2E infw2V Rg(w).

Suppose that (X ;B; �) is a content/measure space, Y �

[�1;+1] and g : X ! Y is a function. Then

inf
V2E

sup
w2V

Rg(w) =

∫
x2X

g(x) d�(x)

and

sup
V2E

inf
w2V

Rg(w) =

∫
x2X

g(x) d�(x):



Sketch of the proof (3/3)

Suppose f is a simple/semisimple function such that f (x) � g(x)
for almost all x 2 X , i.e. there's a �nite/countable partition Q of

x such that f is constant on each element of Q. If (X ;B; �), Q
and w are compatible then∫

x2X
f (x) d�(x) =

∑
x2X

f (x)w(x) �
∑
x2X

g(x)w(x) = Rg(w):

This is not quite true, but it's close enough. The heart of the

proof is showing that for any Q we can choose f and w to get∫
x2X f (x) d�(x) and Rg(w) arbitrarily close to equal.

It's rather complicated because there are many special cases to

be considered or, preferably, avoided. For details see the notes.


