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Morphisms

Structures often come with an appropriate notion of

structure-preserving function, e.g.

I vector spaces and linear transformations,

I groups and group homomorphisms,

I topological spaces and continuous functions, (this one's a

little subtle, because the same underlying set can have

di�erent topologies and the identity function might not be

continuous!)

I normed vector spaces and bounded linear transformations

In each case there's an appropriate notion of an identity and of

composition. There's a whole subject, Category Theory, about

what you can conclude with no other information about your

objects. For measure spaces or content spaces we have a notion

of a morphism of measure or content spaces.



Morphisms of content spaces (1/2)

Suppose (X ;B; �) and (Y ; C; �) are content spaces (or measure

spaces) and f : X ! Y is a function. f is called a morphism if

I C � f ��(B)

I �(E ) = �(f �(E )) whenever both sides make sense, i.e. when

E 2 C.

In some situations we need to distinguish measure and content

spaces, but here we don't, since every measure space is a content

space.

The appearance of f �� shouldn't be too surprising. We've seen it

before when discussing continuous functions.

Also, we saw that if B is a Boolean algebra then so is f ��(B) and
if B is a �-algebra then so is f ��(B).



Morphisms of content spaces (2/2)

Compositions behave as they should, i.e. if (X ;B; �), (Y ; C; �)
and (Z ;D; �) are content spaces (or measure spaces) and

f : X ! Y and g : Y ! Z are morphisms then so is g � f .

Similar to topological spaces and continuous functions, we can

have di�erent content space structures on the same underlying

set, and the set-theoretic identity function between the underlying

sets may or may not be a morphism. For example i : R! R,

de�ned by i(x) = x , is a morphism from (R;J ; �J ) to (R; I; �I),
but not from (R; I; �J ) to (R;J ; �I). In topology we mostly

consider continuous functions between di�erent sets, and consider

only one topology on each set. In measure theory we mostly

consider a single set with multiple Boolean algebras and contents,

some of which may be �-algebras and measures. The de�nitions

are exible enough to deal with the less common cases though.



Re�nements (1/2)

(X ;B0; �0) is called a re�nement of (X ;B; �) if B � B0 and

�0(E ) = �(E ) for all E 2 B, or, equivalently, if the identity

function i : X ! X , i.e. i(x) = x , is a morphism from (X ;B0; �0)
to (X ;B; �).
Showing these are equivalent is straightforward, and is done in the

notes.

Example: (R;J ; �J ) is a re�nement of (R; I; �I). More

generally, if (X ;By; �y) is the completion of (X ;B; �) then
(X ;By; �y) is a re�nement of (X ;By; �y). There are (sort of) two

di�erent completions, for content spaces and for measure spaces,

and the statement above holds for either.

Why are these called re�nements? What's the connection with

re�nement of partitions?



Re�nements (2/2)

Suppose P, Q are partitions of X and B and C are the associated

atomic algebras, i.e. B is the set of unions of elements of P and

C is the set of unions of elements of Q. For any content � on

(X ; C) we can de�ne a content � on (X ;B) by �(E ) = �(E ).
B � C, so (X ; C; �) is a re�nement of (X ;B; �).
Conversely, suppose (X ; C; �) is a re�nement of (X ;B; �). Then
Q is a re�nement of P.

If (X ; C; �) is a re�nement of (X ;B; �) and (X ;D; �) is a
re�nement of (X ; C; �) then (X ;D; �) is a re�nement of

(X ;B; �). This is a consequence of our proposition about

compositions of morphisms.

In the special case where B, C and D come from partitions it

follows from the fact that the re�nement of a re�nement of

partitions is a re�nement.

As with partitions, content spaces (or measure spaces) on a given

set form a non-empty directed set.



Integrals (1/2)
I reviewed Riemann integration in Section 1.20 and Lecture 9.

The idea was to introduce �nite partitions of an interval into

intervals and Riemann sums for each such partition, then take a

limit in our generalised de�nition of limits. Then the properties of

limits, e.g. uniqueness, monotonicity and linearity, imply the

corresponding properties for Riemann integrals. You can rephrase

the bits about integrals in terms of the Boolean algebra I.

We can now generalise this construction. There are actually four

slightly di�erent generalisations, since we have two binary choice

to make:

I We can use Boolean algebras, contents and �nite partitions

again or we can use �-algebras, measures and countable

partitions.

I We can look at functions with values in [0;+1] (with better

convergence and monotonicity results) or with values in R

(with better linearity properties). This parallels what we did

we did with sums.



Integrals (2/2)

We're mostly interested in �-algebras and measures and functions

with values in R, but each version of the theory has its uses.

Until we start exchanging limits and integrals the results and

arguments for the four cases are fairly similar. In some cases

they're identical.

The �-algebras and measures versions are better behaved for

exchanging limits and integrals, which is why this module has a

second semester.

We're still missing a crucial piece of the puzzle though: a

measure analogous to, and a re�nement of, Jordan content. That

will be Lebesgue measure, and we'll construct it once we have our

theory of integration.


