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Atomic algebra

Boolean/o-algebras on a set X are those B € p(p(X)) such that

>» el

» if E€ Bthen X\ E€B

> if Ais a finite/countable subset of B then (g4 E € B.
For o-algebras this was a definition. For Boolean algebras we only
required EU F € B for E, F € B, but that's equivalent to what’s
above. What if we drop the size restriction on A entirely?
An atomic algebra on X is a B € p(p(X)) such that

>» el

» if E€ Bthen X\ E€B

> if Ais a subset of B then (Jgc 4 E € B.
Just as every Boolean algebra is a o-algebra, but not vice-versa,
every o-algebra is an atomic algebra, but not vice versa. The
Borel algebra is a o-algebra but is not an atomic algebra.



Partitions

A partition of a set X is a P € p(p(X)) such that X = Ugcp E
and forall E,F € P, E # &, F # @ and either E=F or

ENF =a. In other words, every £ € P is non-empty and x € X
belongs to one and only one E € P. We’ve met these a few times
already, without naming them. If P is a partition of a set S and
f: S —[0,400] is a function then

> f(s) =D f(s).
SES EcP scE

This was Proposition 6.4.1 in the Chapter on sums.
If wis a measure on a measurable space (X, B) then

w(F)=">_uE).
EeP

provided P is a countable partition of F and P C B. This is
essentially the second condition from the definition of a measure.



Equivalence relations

An equivalence relation on a set X is a binary relation ~ such
that for all x, y, z € X we have

> x ~ X,
> if x ~ ythen y ~ x,
> if x~yandy~zthen x ~ z.

We discussed them in Chapter 2. The equivalence class of an
element x € X is the set

{yeX:x~y}

Any two equivalence classes are either equal or disjoint.



These three things are sort of the same (1/3)

Atomic algebras, partitions and equivalence relations are three
different points of view on the same concept. They aren’t the
same. For example {{1}, {2,3}} is a partition of {1,2, 3}, but is
not an atomic algebra, and certainly not an equivalence relation.
Rather, given any one of the three there’s a natural way to
construct from it the other two.

For example, given an atomic algebra B we can get a partition by
looking at its minimal non-empty elements, i.e. those which
contain no other non-empty element as a subset. So

P={FcB\{o}:VE€B\{@}: ECF=E=F}.

For example, {@, {1}, {2,3},{1,2,3}} is an atomic algebra. Its
minimal elements are the sets {1} and {2, 3}, which form the
partition {{1}, {2, 3}}.

We get an equivalence relation by defining x ~ y if for all E € B
x€ Eifandonlyif y € E.



These three things are sort of the same (2/3)

In the example above we get 2 ~ 3 but 1 » 2 and 1 ~ 3.

Given a partition P we can form an atomic algebra B whose
elements are the sets UEeA E for some A C P. For example, the
atomic algebra on {1, 2, 3} corresponding to the partition
13423} is {@, {1}.{2,3}.{1,2,3}}.

We can get an equivalence relation by defining x ~ y if for all
EcP xeEifandonlyif y € E. For example the equivalence
relation for the partition above has 2 ~ 3 but 1 = 2 and 1 » 3.
Given an equivalence relation we can get an atomic algebra by
saying E € Bif x € E and x ~ y imply y € E. Starting from the
relation 2 ~ 3 but 1 ~ 2 and 1 ~ 3. we get the atomic algebra
{o.{1}.{2,3}{1,2,3}}.

We can get a partition by taking the set of all equivalence classes.
For example, the equivalence classes for the relation above are
{1} and {2, 3}.



These three things are sort of the same (3/3)

As in the example, these constructions are all compatible in the
sense that if | start, for example, with an atomic algebra,
construct the corresponding equivalence relation, then the
partition corresponding to that equivalence relation, and finally
the atomic algebra corresponding to that partition, | get the same
atomic algebra | started with. | could start at any other point and
take any other path.

There is quite a lot to check here. It's all straightforward enough;
there’s just a lot of it. See the notes for the proofs.



More about atomic algebras

It's useful to have all three points of view available. Some things
which look difficult from one point of view are obvious from
another. The advantage of the atomic algebra point of view is its
connection with Boolean algebras and o-algebras.

Atomic algebras have similar properties to Boolean algebras or
o-algebras.

Eg. if ACBthen (g4 E €B.

Also, the intersection of any collection of atomic algebras is an
atomic algebra. For any A € p(p(X)) there's a smallest atomic
algebra containing it. We say that this atomic algebra is
generated by A.



Natural order relations

There's a natural order structure on the atomic algebras on a set,
i.,e. B DB.

There's a natural order structure on partitions, i.e. @ is a
refinement of P if for every E € Q there is an F € P such that
ECF.

There is a natural order structure on the set of equivalence
relations, i.e. ~ is stronger than 0 if x ~ y implies x < y.
These order relations are compatible with the constructions
discussed earlier, e.g. If Bp and Bg are the atomic algebras
corresponding to partitions P and Q then Q is a refinement of P
if and only if Bg D Bp. Again, there is a lot to check, but it's
mostly straightforward. See the notes for details.



Common refinement

Given two partitions P and Q there's a partition R whose
elements are then non-empty intersections E N F where E € P
and F € Q. As the same suggests, R is a refinement of both P
and Q.

The counterpart for atomic algebras is the algebra B generated
by Bp U Bo.

The counterpart for equivalence relations is the weakest relation
stronger than the equivalence relations corresponding to P and
Q, which exists by Proposition 2.3.2.

These operations show that atomic algebras, or partitions, or
equivalence relations, form a directed set.

They would also be a directed set with the opposite order, but a
less interesting one.



Systems of weights, measures

We defined Boolean algebras, closed under finite unions, and
contents, which are defined on them and finitely additive.

Then we defined o-algebras, closed under countable unions, and
measures, which are defined on them and countably additive.
Now we've defined atomic algebras, closed under arbitrary unions,
so should we define something measure-like which is defined on
them and arbitrarily additive? If w: X — [0, +o¢] is a function
then

XEE
would be an example of such an object. It's actually the only

example! That’s not what happened for contents and measures.
We call a function w: X — [0, +00] a system of weights for X.



