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Atomic algebra

Boolean/�-algebras on a set X are those B 2 }(}(X )) such that

I ? 2 B

I if E 2 B then X n E 2 B

I if A is a �nite/countable subset of B then
⋃

E2A E 2 B.

For �-algebras this was a de�nition. For Boolean algebras we only

required E [ F 2 B for E ;F 2 B, but that's equivalent to what's

above. What if we drop the size restriction on A entirely?

An atomic algebra on X is a B 2 }(}(X )) such that

I ? 2 B

I if E 2 B then X n E 2 B

I if A is a subset of B then
⋃

E2A E 2 B.

Just as every Boolean algebra is a �-algebra, but not vice-versa,

every �-algebra is an atomic algebra, but not vice versa. The

Borel algebra is a �-algebra but is not an atomic algebra.



Partitions

A partition of a set X is a P 2 }(}(X )) such that X =
⋃

E2P E

and for all E ;F 2 P, E 6= ?, F 6= ? and either E = F or

E \ F = ?. In other words, every E 2 P is non-empty and x 2 X

belongs to one and only one E 2 P. We've met these a few times

already, without naming them. If P is a partition of a set S and

f : S ! [0;+1] is a function then∑
s2S

f (s) =
∑
E2P

∑
s2E

f (s):

This was Proposition 6.4.1 in the Chapter on sums.

If � is a measure on a measurable space (X ;B) then

�(F ) =
∑
E2P

�(E );

provided P is a countable partition of F and P � B. This is

essentially the second condition from the de�nition of a measure.



Equivalence relations

An equivalence relation on a set X is a binary relation � such

that for all x ; y ; z 2 X we have

I x � x ,

I if x � y then y � x ,

I if x � y and y � z then x � z .

We discussed them in Chapter 2. The equivalence class of an

element x 2 X is the set

fy 2 X : x � yg:

Any two equivalence classes are either equal or disjoint.



These three things are sort of the same (1/3)

Atomic algebras, partitions and equivalence relations are three

di�erent points of view on the same concept. They aren't the

same. For example ff1g; f2; 3gg is a partition of f1; 2; 3g, but is

not an atomic algebra, and certainly not an equivalence relation.

Rather, given any one of the three there's a natural way to

construct from it the other two.

For example, given an atomic algebra B we can get a partition by

looking at its minimal non-empty elements, i.e. those which

contain no other non-empty element as a subset. So

P = fF 2 B n f?g : 8E 2 B n f?g : E � F ) E = Fg:

For example, f?; f1g; f2; 3g; f1; 2; 3gg is an atomic algebra. Its

minimal elements are the sets f1g and f2; 3g, which form the

partition ff1g; f2; 3gg.

We get an equivalence relation by de�ning x � y if for all E 2 B

x 2 E if and only if y 2 E .



These three things are sort of the same (2/3)

In the example above we get 2 � 3 but 1 � 2 and 1 � 3.

Given a partition P we can form an atomic algebra B whose

elements are the sets
⋃

E2A E for some A � P. For example, the

atomic algebra on f1; 2; 3g corresponding to the partition

ff1g; f2; 3gg is f?; f1g; f2; 3g; f1; 2; 3gg.

We can get an equivalence relation by de�ning x � y if for all

E 2 P x 2 E if and only if y 2 E . For example the equivalence

relation for the partition above has 2 � 3 but 1 � 2 and 1 � 3.

Given an equivalence relation we can get an atomic algebra by

saying E 2 B if x 2 E and x � y imply y 2 E . Starting from the

relation 2 � 3 but 1 � 2 and 1 � 3. we get the atomic algebra

f?; f1g; f2; 3g; f1; 2; 3gg.

We can get a partition by taking the set of all equivalence classes.

For example, the equivalence classes for the relation above are

f1g and f2; 3g.



These three things are sort of the same (3/3)

As in the example, these constructions are all compatible in the

sense that if I start, for example, with an atomic algebra,

construct the corresponding equivalence relation, then the

partition corresponding to that equivalence relation, and �nally

the atomic algebra corresponding to that partition, I get the same

atomic algebra I started with. I could start at any other point and

take any other path.

There is quite a lot to check here. It's all straightforward enough;

there's just a lot of it. See the notes for the proofs.



More about atomic algebras

It's useful to have all three points of view available. Some things

which look di�cult from one point of view are obvious from

another. The advantage of the atomic algebra point of view is its

connection with Boolean algebras and �-algebras.

Atomic algebras have similar properties to Boolean algebras or

�-algebras.

E.g. if A � B then
⋂

E2A E 2 B.

Also, the intersection of any collection of atomic algebras is an

atomic algebra. For any A 2 }(}(X )) there's a smallest atomic

algebra containing it. We say that this atomic algebra is

generated by A.



Natural order relations

There's a natural order structure on the atomic algebras on a set,

i.e. B0 � B.

There's a natural order structure on partitions, i.e. Q is a

re�nement of P if for every E 2 Q there is an F 2 P such that

E � F .

There is a natural order structure on the set of equivalence

relations, i.e. � is stronger than ./ if x � y implies x ./ y .

These order relations are compatible with the constructions

discussed earlier, e.g. If BP and BQ are the atomic algebras

corresponding to partitions P and Q then Q is a re�nement of P

if and only if BQ � BP . Again, there is a lot to check, but it's

mostly straightforward. See the notes for details.



Common re�nement

Given two partitions P and Q there's a partition R whose

elements are then non-empty intersections E \ F where E 2 P

and F 2 Q. As the same suggests, R is a re�nement of both P

and Q.

The counterpart for atomic algebras is the algebra BR generated

by BP [ BQ.

The counterpart for equivalence relations is the weakest relation

stronger than the equivalence relations corresponding to P and

Q, which exists by Proposition 2.3.2.

These operations show that atomic algebras, or partitions, or

equivalence relations, form a directed set.

They would also be a directed set with the opposite order, but a

less interesting one.



Systems of weights, measures

We de�ned Boolean algebras, closed under �nite unions, and

contents, which are de�ned on them and �nitely additive.

Then we de�ned �-algebras, closed under countable unions, and

measures, which are de�ned on them and countably additive.

Now we've de�ned atomic algebras, closed under arbitrary unions,

so should we de�ne something measure-like which is de�ned on

them and arbitrarily additive? If w : X ! [0;+1] is a function

then

�(E ) =
∑
x2E

w(x)

would be an example of such an object. It's actually the only

example! That's not what happened for contents and measures.

We call a function w : X ! [0;+1] a system of weights for X .


