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Suppose B is a �-algebra on a set X and � is a measure

on (X ;B). Let By be the set of F 2 }(X ) such that for

every � > 0 there are D;H 2 B such that F4H � D and

�(D) < �. Then By is a �-algebra on X and B � By. For

F 2 By we de�ne

��(F ) = sup
E2B
E�F

�(E ); �+(F ) = inf
G2B
F�G

�(G ):

Then ��(F ) = �+(F ) for all F 2 By. Let �y(F ) be their

common value. Then �y is a measure on (X ;By) and

�y(F ) = �(F ) for all F 2 B.

(X ;By; �y) is called the completion of (X ;B; �). We saw an

almost identical theorem last week, but with Boolean algebras in

place of �-algebras and contents in place of measures.
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B is a Boolean algebra and � is a content so last week's theorem

shows that By is a Boolean algebra on X , that B � By, that

�+(F ) = ��(F ) for all F 2 By, that �y is a content on (X ;By)
and that �y(F ) = �(F ) for all F 2 B.
So we only need to show that By is a �-algebra rather than just a

Boolean algebra and that �y is a measure rather than just a

content, i.e. that
⋃

F2A F 2 By if A is a countable subset of By

and that �y
(⋃

F2A F
)
=
∑

F2A �y(F ) if, in addition, the F 's are

disjoint. Only the countably in�nite case is needed because for

�nite A we already have both statements, so we can take

A = fF0;F1; : : :g

for some sequence of distinct F 's and prove that

1⋃
j=0

Fj 2 B
y; �y

 1⋃
j=0

Fj

 =

1∑
j=0

�y(Fj):
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Fi 2 B
y so for any �i > 0 there are Di ;Hi 2 B such that

Fi4Hi � Di and �(Di) < �i . If � > 0 then �i =
�

2i+1 > 0 so we

can choose Di and Hi such that Fi4Hi � Di and �(Di) <
�

2i+1 .

Let

D =

1⋃
i=0

Di ; F =

1⋃
i=0

Fi ; H =

1⋃
i=0

Hi :

If x 2 F4H then x 2 F and x =2 H or x 2 H and x =2 F . If x 2 F

and x =2 H we have x 2 Fi for some i but x =2 Hj for any j . In

particular x =2 Hi so x 2 Fi4Hi and therefore x 2 Di and x 2 D.

The same argument works if x 2 H and x =2 F , but with the roles

of F and H reversed. So F4H � D.

�(D) = �

(
1⋃
i=0

Di

)
�

1∑
i=0

�(Di) <

1∑
i=0

�

2i+1
= �:

So F 2 By. Therefore By is a �-algebra.
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�y(F ) = ��(Fi) � ��

(⋃1
j=0 Fj

)
= �y

(⋃1
j=0 Fj

)
, since

Fi �
⋃1

j=0 Fi . If �
y(Fi) = +1 for some i then

�y
(⋃1

j=0 Fj

)
= +1 and so �y

(⋃1
j=0 Fj

)
=
∑1

j=0 �
y(Fj).

What's left is the case �y(Fi) < +1 for all i .

�+(Fi) = inf Gi2B

Fi�Gi

�(Gi). If � > 0 then �+(Fi) + �=2i+1 is greater

than the in�mum so there is a Gi 2 B such that Fi � Gi and

�(Gi) < �+(Fi) +
�

2i+1 . Let G =
⋃1

i=0 Gi . Then

�(G ) �

1∑
i=0

�(Gi) <

1∑
i=0

(
�+(Fi) +

�

2i+1

)
=

1∑
i=0

�+(Fi) + �:

Now F � G and G 2 B so �+(F ) � �(G ), and therefore

�+(F ) <

1∑
i=0

�+(Fi) + �:

This holds for all � > 0 so �+(F ) �
∑1

i=0 �
+(Fi).
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Similarly, ��(Fi) = sup Ei2B

Ei�Fi

�(Ei). If � > 0 then ��(Fi)� �=2i+1

is less than the supremum so there is an Ei 2 B such that Ei � Fi

and

�(Ei) < ��(Fi)�
�

2i+1
:

Let E =
⋃1

i=0 Ei . Then

�(E ) =

1∑
i=0

�(Ei) >

1∑
i=0

(
��(Fi)�

�

2i+1

)
=

1∑
i=0

��(Fi) + �:

Here we've used the fact that the F 's are disjoint so the E 's,

which are subsets of the F 's, are also disjoint. Now E � F and

F 2 B so ��(F ) � �(E ), and therefore

��(F ) >

1∑
i=0

��(Fi)� �:

This holds for all � > 0 so ��(F ) �
∑1

i=0 �
�(Fi).
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Fi 2 B

y for each i and F 2 By, so

��(Fi) = �y(Fi) = �+(Fi)

��(F ) = �y(F ) = �+(F ):

From

�+(F ) �

1∑
i=0

�+(Fi)

��(F ) �

1∑
i=0

��(Fi)

it therefore follows that

�y(F ) =

1∑
i=0

�y(Fi):

Thus �y is a measure on (X ;By).



Completion (7/10)
The statement of the theorem we just proved was chosen to look

as much as possible like the one for Boolean algebras and

contents. There are simpler versions if we only care about

�-algebras and measures.

Suppose that (X ;B; �) and (X ;By; �y) are as in the pre-

ceding theorem. Then F 2 By if and only if there are

D;H 2 B such that F4H � D and �(D) = 0. Then

�y(F ) = �(H).

Suppose that there are D;H 2 B such that F4H � D and

�(D) = 0. For any � > 0 we have �(D) < � so F 2 By.

Suppose, conversely, that F 2 By. 1=2k+1 > 0 so there are

Dk ;Hk 2 B such that F4Hk � Dk and �(Dk) <
1

2k+1 . Let

D =
⋂1

i=0

⋃1
j=i Dj and H =

⋂1
i=0

⋃1
j=i Hj . Note that D;H 2 B.

F4H =
⋂1

i=0

⋃1
j=i F4Hi . F4Hi � Di so

1⋃
j=i

F4Hi �

1⋃
j=i

Di ;

1⋂
i=0

1⋃
j=i

F4Hi �

1⋂
i=0

1⋃
j=i

Di :
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1⋂
i=0

1⋃
j=i

F4Hi �

1⋂
i=0

1⋃
j=i

Di ; F4H � D:

Also,

�(

1⋃
j=i

Dj) �

1∑
j=i

�(Dj) �

1∑
j=i

1

2j+1
=

1

2i
:

The sequence of sets
⋃1

j=i Dj is monotone decreasing

�(D0) < +1 so

�(D) = lim
i!1

�

1⋃
j=i

Dj

 � lim
i!1

1

2i
= 0:

So there are D;H 2 B such that F4H � D and �(D) = 0. This

completes the \if and only if" part of the statement. We still

have to prove that �y(F ) = �(H).
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�y(H [D) + �y(H \D) = �y(H) + �y(D) and
�y(D) = �(D) = 0, from which it follows that �y(H \D) = 0 as

well. Therefore �y(H [D) = �y(H). Now F � H [D so

�y(F ) � �y(H [D) = �y(H) = �(H):

On the other hand,

�y(F [D) + �y(F \D) = �y(F ) + �y(D);

�y(D) = �(D) = 0 and �y(H \D) = 0 so �y(F [D) = �y(F ).
Now H � F [D so

�(H) = �y(H) � �y(F [D) = �y(F ):

Therefore �y(F ) = �(H). This completes the proof.
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Suppose that (X ;B; �) and (X ;By; �y) are as in the pre-

ceding theorem. The following two statements are equiv-

alent:

1. F 2 By and �y(F ) = 0.

2. There is a G 2 B such that F � G and �(G ) = 0.

Suppose F 2 By and �y(F ) = 0. By the preceding proposition

there are D;H 2 B such that F4H � D, �(D) = 0 and

�(H) = �(F ) = 0. Let G = D [ H. Then G 2 B and

�(G ) = �(D [ H) � �(D) + �(H) = 0 and hence �(G ) = 0. Also

F � G .

Suppose conversely that there is a G 2 B such that F � G and

�(G ) = 0. Let D = H = G . Then F4H = G n F � G = D and

�(D) = �(G ) = 0. So F 2 By by the preceding proposition. Also,

F � G so

�y(F ) � �y(G ) = �(G ) = 0

and hence �y(F ) = 0.


