MAU22200 Lecture 43

John Stalker

Trinity College Dublin

14 February 2022



A natural content on Z (1/2)

Last time we saw that the set Z of finite unions of intervals in R is
a Boolean algebra on R. If E € 7 then a partition of E is a finite
set of disjoint intervals whose union is E. Every element of Z has
a such a partition, but it may have many such partitions, e.g.

[-1,1] = [-1,0)U[0,1] = [-1,0] U (0, 1]
—[-1,-1/3]U(~1/3.1/3) U[1/3.1].

There is a content u on (R,T) such that if {I1,..., Im}
Is a partition of E then

£ is the length function, defined in the obvious way, i.e.
£(1) = sup! —inf [ for non-empty / and £(@) = 0.



A natural content on Z (2/2)

W(E) =Y 41 £(lk) can't be used directly as a definition because
there are multiple partitions of £ and we don’t know that the
right hand side gives the same value for each possible partition.
There are two possible ways around this:

» Show that if {/1,..., Im} and {4, ..., Jn} are partitions of
the same element of £ then >°¢ 1 £(lk) = D71 £(J)), so
there is no conflict.

» Define u(E) directly in terms of £ and show that if
{h,..., Im} is a partition of E then u(E) = 3711 £(/k).

In the notes | chose the second option, but the first also works. |
set u(E) equal to the limit of 27 the number of rationals in £
where the denominator divides 2", and show that it is a content
on Z and that u(E) = Y ¢ £(/k).



The Jordan algebra and Jordan content (1/2)

We proved the following theorem last time:

Suppose B is a Boolean algebra on a set X and w is
a content on (X,B). Let BT be the set of F € p(X)
such that for every € > 0 there are D, H € B such that
FAH C D and u(D) < €. Then Bt is a Boolean alge-
bra on X and B C B, For F € B we define u=(F) =
supees,ecr H(E) and w(F) = infcen Fce u(G) . Then
u=(F) = put(F) for all F € Bf. Let u'(F) be their
common value. Then u' is a content on (X,B) and
u'(F) = u(F) for all F € B.

We can apply this to (X, B, u) = (R,Z, ). The resulting B is
called the Jordan algebra on R, denoted J, and the resulting ut
is called the Jordan content.



The Jordan algebra and Jordan content (2/2)

The Jordan algebra J is strictly larger than the algebra Z of finite
unions of intervals. The Cantor set C belongs to J but not to Z.
Its Jordan content is 0.

To see this, we note that for every € > 0 there is an n € N such
that (2/3)" < e. We can then take D = H = C, and check that
D,HeZ, CAHC D, and u(D) =(2/3)" < €. Therefore C € J.
Also, /,LT(C) =infgez,cco u(G) < (2/3)" for all n.

Not every subset of R belongs to J. Many interesting subsets do
not. E.g. Q ¢ J. The proof is given in the notes.

You should think of J as the object of interest and Z merely as
scaffolding used in the construction of 7.



Banach-Tarski

Theorem (Banach-Tarski): There are subsets E1, E», Es, E4,
Es and Fy, F», F3, F4, F5 of R3 such that

> E£; is congruent to F; for each /,
> EENEj=@ and F;NF; = @ when | # J,
> FiUEUEsU E4U Es is a ball of radius 1.

> UM UFRUF4U Fs is the union of two balls of radius 1,
which do not intersect.

Suppose B is a Boolean algebra on R3,  is a content, and
» congruent sets have the same content, and
» balls have a content equal to their volume.

If Eq, ..., Es € B then we can prove that
37 37

Equivalently, we know that 27 # 87 so at least one £; is not in
B. Any reasonable notion of volume is a content with the two
properties above, so can't be defined for all subsets of R3.



Measures (1/4)

Contents are defined on Boolean-algebras. The corresponding
notion for o-algebras is a measure.
@ is @ measure on (X, B) if

> u(@)=0, and

» if A C Bis a countable collection of disjoint sets then

H (UEeA E) = EEEA K(E).

This is a generalisation because every measure on a o-algebra is a
content, but not every content is a measure. If you take
A={E,F} where E,F € Band ENF = & you get
w(EUF) = wu(E)+ w(F) from the definition of a content.



Measures (2/4)

Here’s a content which is not a measure: Take X = N and
B = p(N). B is a o-algebra. Define
0 if E is finite,
p(E) = L
+oo if E is infinite.

w(@) = 0. Suppose E, F € p(N). If E and F are finite then
EUF isfiniteand u(EUF)=0=04+0=pwu(E)+u(F). If Eis
finite and F is infinite then E U F is infinite and
U(EUF)=400=0++o0 = u(E)+ u(F). If Eisinfinite and F
is finite then E U F is infinite and

UW(EUF) =400 =400+ 0= pu(E)+ wu(F). If E and F are
infinite then £ U F is infinite and

w(EUF) =400 =400+ 400 = u(E) + u(F). So

w(EUF) =pwp(E)+ w(F)in all cases and w is a content.



Measures (3/4)

Let A be the set of singletons in N, i.e. sets with only one
element. They're all disjoint, i.e. if E,F € A and E # F then
ENF=@a. Ugey = N, which is infinite, so pu (Uge4) = +o0.
But > rc 4 (E) =2 £c40 =0, since every element of A is
finite. u (Ugea) # Dopes W(E) S0 p is not a measure.
If (X, B, ) is a measure space then E € B is called a null set if
w(E) = 0. The empty set is always a null set. The union of
countably many disjoint null sets is a null set. We'll see soon that
we can drop the word “disjoint” .
Suppose B is o-algebra on X and x € X. Suppose
w: X — [0, 400] is a function. The following are measures on
(X.B):

> u(E) =0 forall E € B,

» (@) =0 and u(E) = +oc for all other E € B,

> u(Ey=1ifaxe Eand u(E)=0if x ¢ E.



Measures (4/4)

» wu(E) = nif E is a finite set in B with n elements and
w(E) = +oo if E is an infinite set in B.
>

X€E

We saw in Lecture 41 that they were contents, but they're also
measures. The first and second examples are not very interesting
but the third example is known as Dirac measure and the fourth
are known as counting measure. The first four examples are all
special cases of the fifth.

The null sets in these five examples are, in order, every subset,
only the empty set, the sets which don’t contain x, only the
empty set, and the subsets of w*({0}).

The measure we're most interested in, Lebesgue measure, won't
appear until after Reading Week.



