MAU22200 Lecture 42

John Stalker

Trinity College Dublin

8 February 2022

Properties of contents (1/2)

Suppose X is a set, \mathcal{B} is a Boolean algebra on X and μ is a content on (X, \mathcal{B}) .

- Monotonicity: If $E, F \in \mathcal{B}$ and $E \subseteq F$ then $\mu(E) \leq \mu(F)$. $F = E \cup (F \setminus E)$ and $E \cap (F \setminus E) = \emptyset$ so $\mu(F) = \mu(E) + \mu(F \setminus E)$. $\mu(F \setminus E) \geq 0$ so $\mu(E) \leq \mu(F)$.
- Finite additivity: If E₁, E₂, ..., E_m are disjoint elements of B then µ (∪_{i=1}^m E_i) = ∑_{i=1}^m µ(E_i). This is true when m = 0 and the general case is proved by induction on m.
- ► Finite subadditivity: If $E_1, E_2, ..., E_m$ are elements of \mathcal{B} then $\mu \left(\bigcup_{i=1}^m E_i \right) \leq \sum_{i=1}^m \mu(E_i)$. Let $G_i = E_i \setminus \left(\bigcup_{j < i} E_j \right)$. Then the *G*'s are disjoint elements of \mathcal{B} and $\bigcup_{i=1}^m G_i = \bigcup_{i=1}^m E_i$ so $\mu \left(\bigcup_{i=1}^m E_i \right) = \sum_{i=1}^m \mu(G_i)$. But $G_i \subseteq E_i$ so $\mu(G_i) \leq \mu(E_i)$ and $\sum_{i=1}^m \mu(G_i) \leq \sum_{i=1}^m \mu(E_i)$.

Properties of contents (2/2)

► The union/intersection property: If
$$E, F \in \mathcal{B}$$
 then
 $\mu(E \cup F) + \mu(E \cap F) = \mu(E) + \mu(F)$.
From $E \cup F = E \cup (F \setminus E)$ and $E \cap (F \setminus E) = \emptyset$ it follows
that

$$\mu(E \cup F) = \mu(E) + \mu(F \setminus E).$$

From $F = (F \setminus E) \cup (E \cap F)$ and $(F \setminus E) \cup (E \cap F) = \emptyset$ it follows that

$$\mu(F) = \mu(F \setminus E) + \mu(E \cap F).$$

So

 $\mu(E)+\mu(F)=\mu(E)+\mu(F\setminus E)+\mu(E\cap F)=\mu(E\cup F)+\mu(E\cap F).$

Completion (1/7)

Suppose \mathcal{B} is a Boolean algebra on a set X and μ is a content on (X, \mathcal{B}) . Let \mathcal{B}^{\dagger} be the set of $F \in \wp(X)$ such that for every $\epsilon > 0$ there are $D, H \in \mathcal{B}$ such that $F \triangle H \subseteq D$ and $\mu(D) < \epsilon$. Then \mathcal{B}^{\dagger} is a Boolean algebra on X and $\mathcal{B} \subseteq \mathcal{B}^{\dagger}$. For $F \in \mathcal{B}^{\dagger}$ we define

$$\mu^{-}(F) = \sup_{\substack{E \in \mathcal{B} \\ E \subseteq F}} \mu(E)$$
$$\mu^{+}(F) = \inf_{\substack{G \in \mathcal{B} \\ F \subseteq G}} \mu(G).$$

Then $\mu^{-}(F) = \mu^{+}(F)$ for all $F \in \mathcal{B}^{\dagger}$. Let $\mu^{\dagger}(F)$ be their common value. Then μ^{\dagger} is a content on (X, \mathcal{B}) and

$$\mu^{\dagger}(F) = \mu(F)$$

for all $F \in \mathcal{B}$.

 $(X, \mathcal{B}^{\dagger}, \mu^{\dagger})$ is called the *completion* of (X, \mathcal{B}, μ) .

Completion (2/7)

There's a long list of things to show:

 $\blacktriangleright \ \mathcal{B} \subseteq \mathcal{B}^{\dagger}$

•
$$\mathcal{B}^{\dagger}$$
 is a Boolean algebra on X.

▶ If
$$F \in \mathcal{B}^{\dagger}$$
 then $\mu^{-}(F) = \mu^{+}(F)$.

• μ^{\dagger} is a content on $(X, \mathcal{B}^{\dagger})$.

• If
$$F \in \mathcal{B}$$
 then $\mu^{\dagger}(F) = \mu(F)$.

First we show that $\mathcal{B} \subseteq \mathcal{B}^{\dagger}$. For any $F \in \mathcal{B}$ and $\epsilon > 0$ we choose $D = \emptyset$ and H = F. Then $D, H \in \mathcal{B}$,

$$F \triangle H = \emptyset \subseteq D$$

and

$$\mu(D) = \mu(arnothing) = 0 < \epsilon$$

so $F \in \mathcal{B}^{\dagger}$. So if $F \in \mathcal{B}$ then $F \in \mathcal{B}^{\dagger}$. In other words, $\mathcal{B} \subseteq \mathcal{B}^{\dagger}$.

Completion (3/7)

Next we show that \mathcal{B}^{\dagger} is a Boolean algebra on X. $\emptyset \in \mathcal{B}$ and $\mathcal{B} \subseteq \mathcal{B}^{\dagger}$ so $\emptyset \in \mathcal{B}^{\dagger}$.

Suppose $F \in \mathcal{B}^{\dagger}$, i.e. that for all $\epsilon > 0$ there are $D, H \in \mathcal{B}$ such that $F \triangle H \subseteq D$ and $\mu(D) < \epsilon$. Then

$$(X \setminus F) \triangle (X \setminus H) = F \triangle H \subseteq D$$
,

 $X \setminus H \in \mathcal{B}$ and $\mu(D) < \epsilon$. So $X \setminus F \in \mathcal{B}^{\dagger}$. Suppose $F_1, F_2 \in \mathcal{B}^{\dagger}$, i.e. that for any $\delta > 0$ there are $D_1, H_1, D_2, H_2 \in \mathcal{B}$ such that $F_i \triangle H_i \subseteq D_i$ and $\mu(D_i) < \delta$. If $\epsilon > 0$ then $\epsilon/2 > 0$ so there are $D_1, H_1, D_2, H_2 \in \mathcal{B}$ such that $F_i \triangle H_i \subseteq D_i$ and $\mu(D_i) < \epsilon/2$. Let $D = D_1 \cup D_2$ and $H = H_1 \cup H_2$. Then $D, H \in \mathcal{B}$,

$$(F_1 \cup F_2) \triangle H = (F_1 \cup F_2) \triangle (H_1 \cup H_2) \subseteq (F_1 \triangle H_1) \cup (F_2 \triangle H_2)$$
$$\subseteq D_1 \cup D_2 = D$$

 $\mu(D) = \mu(D_1 \cup D_2) \leq \mu(D_1) + \mu(D_2) < \epsilon/2 + \epsilon/2 = \epsilon.$

So for every $\epsilon > 0$ there are $D, H \in \mathcal{B}$ such that $(F_1 \cup F_2) \triangle H \subseteq D$ and $\mu(D) < \epsilon$. Therefore $F_1 \cup F_2 \in \mathcal{B}^{\dagger}$.

Completion (4/7)

Next we show that if $F \in \mathcal{B}^{\dagger}$ then $\mu^{-}(F) = \mu^{+}(F)$. If $E, G \in \mathcal{B}$ and $E \subseteq F \subseteq G$ then $E \subseteq G$ and hence $\mu(E) \subseteq \mu(G)$. Taking the supremum over E and the infimum over G gives

$$\mu^{-}(F) = \sup_{\substack{E \in \mathcal{B} \\ E \subseteq F}} \mu(E) \le \inf_{\substack{G \in \mathcal{B} \\ F \subseteq G}} \mu(G) = \mu^{+}(F).$$

So $\mu^{-}(F) \leq \mu^{+}(F)$. By hypothesis $F \in \mathcal{B}^{\dagger}$ so for any $\epsilon > 0$ there are $D, H \in \mathcal{B}$ such that $F \triangle H \subseteq D$ and $\mu(D) < \epsilon$. Let $E = H \setminus D$ and $G = H \cup D$. Then $E, G \in \mathcal{B}$ and $E \subseteq F \subseteq G$ so $\mu(E) \leq \mu^{-}(F)$ and $\mu^{+}(F) \leq \mu(G)$. On the other hand, $G = E \cup D$ so

$$\mu(G) \leq \mu(E) + \mu(D) < \mu(E) + \epsilon$$
.

Combining these inequalities,

$$\mu^+(F) < \mu^-(F) + \epsilon.$$

This holds for all $\epsilon > 0$ so $\mu^+(F) \le \mu^-(F)$. Together with the reverse inequality, proved above, this gives $\mu^+(F) = \mu^-(F)$.

Completion (5/7)

Next we show that μ^{\dagger} is a content.

$$\mu^{\dagger}(\varnothing) = \mu^{-}(\varnothing) = \sup_{\substack{E \in \mathcal{B} \\ E \subseteq \varnothing}} \mu(E) = \sup_{E = \varnothing} \mu(E) = \mu(\varnothing) = 0.$$

Suppose F_1 , $F_2 \in \mathcal{B}^{\dagger}$ and $F_1 \cap F_2 = \emptyset$.

$${E \in \mathcal{B}: E \subseteq F_i} \subseteq {E \in \mathcal{B}: E \subseteq F_1 \cup F_2}$$

SO

$$\mu^{\dagger}(F_i) = \mu^{-}(F_i) = \sup_{\substack{E \in \mathcal{B} \\ E \subseteq F_i}} \mu(E) \leq \sup_{\substack{E \in \mathcal{B} \\ E \subseteq F_1 \cup F_2}} \mu(E) = \mu^{-}(F_1 \cup F_2) = \mu^{\dagger}(F_1 \cup F_2)$$

It follows that if $\mu^{\dagger}(F_i)=+\infty$ then $\mu^{\dagger}(F_1\cup F_2)=+\infty.$ So

$$\mu^{\dagger}(F_1\cup F_2)=\mu^{\dagger}(F_1)+\mu^{\dagger}(F_2).$$

Completion (6/7)

The proof that

$$\mu^{\dagger}(F_1 \cup F_2) = \mu^{\dagger}(F_1) + \mu^{\dagger}(F_2)$$

when $\mu^{\dagger}(F_1)$ and $\mu^{\dagger}(F_2)$ are less than $+\infty$ is more complicated. The crucial idea is to prove

$$\mu^-(F_1\cup F_2) \geq \mu^-(F_1) + \mu^-(F_2)$$

and

$$\mu^+(F_1\cup F_2) \leq \mu^+(F_1) + \mu^+(F_2).$$

separately. $\mu^{\dagger}=\mu^{+}=\mu^{-}$ so it then follows that

$$\mu^{\dagger}(F_1 \cup F_2) = \mu^{\dagger}(F_1) + \mu^{\dagger}(F_2).$$

See the notes for the proof of the two inequalities above.

Completion (7/7)

Finally we show that $\mu^{\dagger}(F) = \mu(F)$ if $F \in \mathcal{B}$. If $E \in \mathcal{B}$ and $E \subseteq F$ then $\mu(E) \leq \mu^{-}(F)$, by the definition of μ^{-} . Taking E = F gives $\mu(F) \leq \mu^{-}(F)$. Similarly, if $G \in \mathcal{B}$ and $F \subseteq G$ then $\mu^{+}(F) \leq \mu(G)$. Taking G = F gives $\mu^{+}(F) \leq \mu(F)$. But

$$\mu^-(F) = \mu^\dagger(F) = \mu^+(F)$$

SO

$$\mu^{\dagger}(F) = \mu(F).$$