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Constructions with Boolean algebras

The intersection of any collection of Boolean algebras on a set X

is again a Boolean algebra on X .

The union of a collection of Boolean algebras needn't be a

Boolean algebra.

B1 = f?; f1g; f2; 3g; f1; 2; 3gg

B2 = f?; f2g; f1; 3g; f1; 2; 3gg

are Boolean algebras on f1; 2; 3g, but B1 [ B2 is not a Boolean

algebra. f1g 2 B1 [ B2 and f2g 2 B1 [ B2 but f1; 2g =2 B1 [ B2.

Note that B1 \ B2 = f?; f1; 2; 3gg is a Boolean algebra, as it

must be.

For any set of subsets of X there is a smallest Boolean algebra

which contains them. This set is said to generate the algebra.

The Boolean algebra I is generated by the set of intervals.



Boolean algebras and functions

We've already seen that f �� preserves a lot of structures.

Boolean algebras are no exception.

Suppose X and Y are sets, f : X ! Y is a function and

B is a Boolean algebra on X . Then f ��(B) is a Boolean

algebra on Y .

For a proof, see the notes.



�-algebras (1/2)

B 2 }(}(X )) is called a �-algebra if

I ? 2 B,

I if E 2 B then X n E 2 B, and

I if A is a countable subset of B then
⋃
E2A E 2 B.

This is the same as the de�nition of a Boolean algebra, except we

allow countable unions rather than just the union of a pair of

elements.

The pre�x � is often used to denote countable unions. We've

seen this before with �-compact sets and will see it again.

\Algebra" is more tenuous here than for Boolean algebras

because operations on countably many operands don't normally

play a role in Algebra.

Sets with two elements are countable, so every �-algebra is a

Boolean algebra. Not every Boolean algebra is a �-algebra. For

example, the Boolean algebra I of �nite unions of intervals is not

a �-algebra.



�-algebras (2/2)

�-algebras are closed under countable intersections as well as

countable unions:
Suppose A is a non-empty countable subset of B. Then⋂
E2A E 2 B.

This is true because
⋂
E2A E = X n (

⋃
E2A(X n E )).

Most of the properties of �-algebras are analogous to those of

Boolean algebras. For example,

I If X and Y are sets, f : X ! Y is a function and B is a

�-algebra on X then f ��(B) is a �-algebra on Y .

I The intersection of any non-empty collection of �-algebras

on X is a �-algebra on X .

I For any A 2 }(}(A)) there is a smallest �-algebra

containing A. The set A is said to generate this �-algebra.



The Borel �-algebra (1/4)

Suppose (X ; T ) is a topological space. The �-algebra generated

by T is called the Borel �-algebra. Its elements are called Borel

sets.
The Cantor set is a Borel set.

As we've already seen,

C =
⋂
n2N

Cn

where C0 = [0; 1], C1 = [0; 1=3] [ [2=3; 1],
C2 = [0; 1=9] [ [2=9; 1=3] [ [2=3; 7=9] [ [8=9; 1], etc. Each open

set is a Borel set, since the open sets generate the Borel sets.

Each closed interval is a Borel set, since its complement is open.

Every �nite union of closed intervals is a Borel set, so Cn is a

Borel set for each n. The intersection of countably many Borel

sets is Borel, so C is Borel.

It's also possible, though di�cult, to give examples of subsets of

R which are not Borel.



The Borel �-algebra (2/4)

Suppose (X ; TX ) and (Y ; TY ) are sets and f : X ! Y is

a continuous function. If E is a Borel subset in Y then

f �(E ) is a Borel subset of X .

Let BX and BY be the Borel algebras on X and Y respectively.

Let

A = f ��(BX ):

This is a �-algebra on Y .

TX � BX

f ��(TX ) � f ��(BX ) = A:

It was proved last term that if f is continuous then

TY � f ��(TX ):



The Borel �-algebra (3/4)

From

f ��(TX ) � A

and

TY � f ��(TX )

it follows that

TY � A:

A is a �-algebra on Y and BY is the smallest �-algebra on Y

containing TY so

BY � A = f ��(BX ):

If E 2 BY then E 2 f ��(BX ) so f �(E ) 2 BX . In other words, if E

is a Borel subset in Y then f �(E ) is a Borel subset of X .



The Borel �-algebra (4/4)

Suppose (X ; TX ) and (Y ; TY ) are topological spaces, E

is a Borel subset of X and F is a Borel subset of Y . Then

E � F is a Borel subset of X � Y .

To prove this, note that

E � F = ��1(E ) \ ��2(F )

where �1 and �2 are the two projections of E � F . They're

continuous, so ��1(E ) and ��2(F ) are Borel subsets of E �F by the

preceding proposition. So their intersection is also a Borel subset.



Content

If X is a set and B is a Boolean algebra on X then

� : B ! [0;+1] is called a content on (X ;B) if

I �(?) = 0,

I if E ;F 2 B and E \ F = ? then

�(E [ F ) = �(E ) + �(F ):

The �rst condition is almost redundant. Suppose there's at least

one E 2 B such that �(E ) < +1. Then

�(E ) + 0 = �(E ) = �(E [?) = �(E ) + �(?):

By Cancellation then �(?) = 0.

Contents are more often called �nitely additive measures, but

there are problems with this name.



Simple examples

Suppose B is Boolean algebra on X and x 2 X . The following are

contents on (X ;B):

I �(E ) = 0 for all E 2 B,

I �(?) = 0 and �(E ) = +1 for all other E 2 B,

I �(E ) = 1 if a x 2 E and �(E ) = 0 if x =2 E .

I �(E ) = n if E is a �nite set in B with n elements and

�(E ) = +1 if E is an in�nite set in B.

Suppose w : X ! [0;+1] is a function. Then

�(E ) =
∑
x2E

w(x)

is a content. The last example on the list above is simply the

special case where w(x) = 1 for all x 2 X .


