MAU22200 Lecture 41

John Stalker

Trinity College Dublin

8 February 2022

Constructions with Boolean algebras

The intersection of any collection of Boolean algebras on a set X is again a Boolean algebra on X. The union of a collection of Boolean algebras needn't be a Boolean algebra.

are Boolean algebras on $\{1, 2, 3\}$, but $\mathcal{B}_1 \cup \mathcal{B}_2$ is not a Boolean algebra. $\{1\} \in \mathcal{B}_1 \cup \mathcal{B}_2$ and $\{2\} \in \mathcal{B}_1 \cup \mathcal{B}_2$ but $\{1, 2\} \notin \mathcal{B}_1 \cup \mathcal{B}_2$. Note that $\mathcal{B}_1 \cap \mathcal{B}_2 = \{\emptyset, \{1, 2, 3\}\}$ is a Boolean algebra, as it must be.

For any set of subsets of X there is a smallest Boolean algebra which contains them. This set is said to generate the algebra. The Boolean algebra \mathcal{I} is generated by the set of intervals.

Boolean algebras and functions

We've already seen that f^{**} preserves a lot of structures. Boolean algebras are no exception.

Suppose X and Y are sets, $f: X \to Y$ is a function and \mathcal{B} is a Boolean algebra on X. Then $f^{**}(\mathcal{B})$ is a Boolean algebra on Y.

For a proof, see the notes.

 σ -algebras (1/2)

 $\mathcal{B} \in \wp(\wp(X))$ is called a σ -algebra if

 $\blacktriangleright \ \varnothing \in \mathcal{B},$

- if $E \in \mathcal{B}$ then $X \setminus E \in \mathcal{B}$, and
- if \mathcal{A} is a countable subset of \mathcal{B} then $\bigcup_{E \in \mathcal{A}} E \in \mathcal{B}$.

This is the same as the definition of a Boolean algebra, except we allow countable unions rather than just the union of a pair of elements.

The prefix σ is often used to denote countable unions. We've seen this before with σ -compact sets and will see it again.

"Algebra" is more tenuous here than for Boolean algebras because operations on countably many operands don't normally play a role in Algebra.

Sets with two elements are countable, so every σ -algebra is a Boolean algebra. Not every Boolean algebra is a σ -algebra. For example, the Boolean algebra \mathcal{I} of finite unions of intervals is not a σ -algebra.

σ -algebras (2/2)

 $\sigma\textsc{-algebras}$ are closed under countable intersections as well as countable unions:

Suppose \mathcal{A} is a non-empty countable subset of \mathcal{B} . Then $\bigcap_{E \in \mathcal{A}} E \in \mathcal{B}$.

This is true because $\bigcap_{E \in \mathcal{A}} E = X \setminus (\bigcup_{E \in \mathcal{A}} (X \setminus E))$. Most of the properties of σ -algebras are analogous to those of Boolean algebras. For example,

- ▶ If X and Y are sets, $f: X \to Y$ is a function and \mathcal{B} is a σ -algebra on X then $f^{**}(\mathcal{B})$ is a σ -algebra on Y.
- The intersection of any non-empty collection of σ-algebras on X is a σ-algebra on X.
- For any A ∈ ℘(℘(A)) there is a smallest σ-algebra containing A. The set A is said to generate this σ-algebra.

The Borel σ -algebra (1/4)

Suppose (X, \mathcal{T}) is a topological space. The σ -algebra generated by \mathcal{T} is called the *Borel* σ -algebra. Its elements are called *Borel* sets.

The Cantor set is a Borel set.

As we've already seen,

$$C=\bigcap_{n\in\mathbb{N}}C_n$$

where $C_0 = [0, 1]$, $C_1 = [0, 1/3] \cup [2/3, 1]$, $C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$, etc. Each open set is a Borel set, since the open sets generate the Borel sets. Each closed interval is a Borel set, since its complement is open. Every finite union of closed intervals is a Borel set, so C_n is a Borel set for each n. The intersection of countably many Borel sets is Borel, so C is Borel.

It's also possible, though difficult, to give examples of subsets of ${\bf R}$ which are *not* Borel.

The Borel σ -algebra (2/4)

Suppose (X, T_X) and (Y, T_Y) are sets and $f: X \to Y$ is a continuous function. If E is a Borel subset in Y then $f^*(E)$ is a Borel subset of X.

Let \mathcal{B}_X and \mathcal{B}_Y be the Borel algebras on X and Y respectively. Let

$$\mathcal{A}=f^{**}(\mathcal{B}_X).$$

This is a σ -algebra on Y.

$$\mathcal{T}_X \subseteq \mathcal{B}_X$$

$$f^{**}(\mathcal{T}_X) \subseteq f^{**}(\mathcal{B}_X) = \mathcal{A}.$$

It was proved last term that if f is continuous then

$$\mathcal{T}_Y \subseteq f^{**}(\mathcal{T}_X).$$

The Borel σ -algebra (3/4)

From

$$f^{**}(\mathcal{T}_X) \subseteq \mathcal{A}$$

and

$$\mathcal{T}_Y \subseteq f^{**}(\mathcal{T}_X)$$

it follows that

 $\mathcal{T}_Y \subseteq \mathcal{A}$.

 \mathcal{A} is a σ -algebra on Y and \mathcal{B}_Y is the smallest σ -algebra on Y containing \mathcal{T}_Y so

$$\mathcal{B}_Y \subseteq \mathcal{A} = f^{**}(\mathcal{B}_X).$$

If $E \in \mathcal{B}_Y$ then $E \in f^{**}(\mathcal{B}_X)$ so $f^*(E) \in \mathcal{B}_X$. In other words, if E is a Borel subset in Y then $f^*(E)$ is a Borel subset of X.

The Borel σ -algebra (4/4)

Suppose (X, T_X) and (Y, T_Y) are topological spaces, E is a Borel subset of X and F is a Borel subset of Y. Then $E \times F$ is a Borel subset of $X \times Y$.

To prove this, note that

$$E \times F = \pi_1^*(E) \cap \pi_2^*(F)$$

where π_1 and π_2 are the two projections of $E \times F$. They're continuous, so $\pi_1^*(E)$ and $\pi_2^*(F)$ are Borel subsets of $E \times F$ by the preceding proposition. So their intersection is also a Borel subset.

Content

If X is a set and \mathcal{B} is a Boolean algebra on X then $\mu: \mathcal{B} \to [0, +\infty]$ is called a *content* on (X, \mathcal{B}) if

•
$$\mu(\varnothing) = 0$$
,

• if
$$E, F \in \mathcal{B}$$
 and $E \cap F = \emptyset$ then

$$\mu(E\cup F)=\mu(E)+\mu(F).$$

The first condition is almost redundant. Suppose there's at least one $E \in \mathcal{B}$ such that $\mu(E) < +\infty$. Then

$$\mu(E) + 0 = \mu(E) = \mu(E \cup \emptyset) = \mu(E) + \mu(\emptyset).$$

By Cancellation then $\mu(\emptyset) = 0$.

Contents are more often called *finitely additive measures*, but there are problems with this name.

Simple examples

Suppose \mathcal{B} is Boolean algebra on X and $x \in X$. The following are contents on (X, \mathcal{B}) :

•
$$\mu(E) = 0$$
 for all $E \in \mathcal{B}$,

•
$$\mu(\varnothing) = 0$$
 and $\mu(E) = +\infty$ for all other $E \in \mathcal{B}$,

•
$$\mu(E) = 1$$
 if a $x \in E$ and $\mu(E) = 0$ if $x \notin E$.

• $\mu(E) = n$ if E is a finite set in \mathcal{B} with n elements and $\mu(E) = +\infty$ if E is an infinite set in \mathcal{B} .

Suppose $w\colon X\to [0,+\infty]$ is a function. Then

$$\mu(E) = \sum_{x \in E} w(x)$$

is a content. The last example on the list above is simply the special case where w(x) = 1 for all $x \in X$.