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Tonelli's Theorem
Last time we saw that

Suppose A is a set of disjoint sets. In other words if

P;Q 2 A and P 6= Q then P\Q = ?. Let S =
⋃
P2A P.

Suppose f : S ! [0;+1] is a function. Then∑
s2S

f (s) =
∑
P2A

∑
s2P

f (s):

Tonelli's Theorem (for sums) says that

Suppose A and B are sets and f : A� B ! [0;+1] is a
function. Then∑

a2A

∑
b2B

f (a; b) =
∑

(a;b)2A�B

f (a; b) =
∑
b2B

∑
a2A

f (a; b):

To prove the �rst equation, we apply the theorem above with

S = A� B and A is the set of subsets of S of the form fag � B

for a 2 A. The second equation is similar.



Fubini's Theorem (1/4)

Fubini's Theorem (for sums) says that

Suppose A and B are sets and g : A�B ! R is a function

such that ∑
(a;b)2A�B

g(a; b)

is convergent. Then∑
a2A

∑
b2B

g(a; b) =
∑

(a;b)2A�B

g(a; b) =
∑
b2B

∑
a2A

g(a; b):

Convergent sums are absolutely convergent, so∑
(a;b)2A�B

jg(a; b)j < +1:



Fubini's Theorem (2/4)
Let S = A� B and D the set of �nite subsets of S , ordered by

inclusion. De�ne f : D � S ! R by

f (H; (a; b)) =

{
g(a; b) if (a; b) 2 H;

0 if (a; b) =2 H:

Then

lim
H2D

f (H; (a; b)) = g(a; b)

and

jf (H; (a; b))j � jg(a; b)j:

We can apply the Dominated Convergence Theorem to get

lim
H2D

∑
(a;b)2S

f (H; (a; b)) =
∑

(a;b)2S

lim
H2D

f (H; (a; b)):

Note that this is the version of the DCT for nets, not sequences,

i.e. the one proved in the notes, not the one from lecture.



Fubini's Theorem (3/4)

Similarly, using the Dominated Convergence Theorem twice gives

lim
H2D

∑
a2A

∑
b2B

f (H; (a; b)) =
∑
a2A

lim
H2D

∑
b2B

f (H; (a; b))

=
∑
a2A

∑
b2B

lim
H2D

f (H; (a; b)):

lim
H2D

∑
b2B

∑
a2A

f (H; (a; b)) =
∑
b2B

∑
a2A

lim
H2D

f (H; (a; b)):

∑
a2A

∑
b2B

f (H; (a; b)) =
∑

(a;b)2A�B

f (H; (a; b)) =
∑
b2B

∑
a2A

f (H; (a; b))

because these are �nite sums, so the order of summation doesn't

matter. We take the limit over H 2 D.



Fubini's Theorem (4/4)

∑
a2A

∑
b2B

lim
H2D

f (H; (a; b)) =
∑

(a;b)2A�B

lim
H2D

f (H; (a; b))

=
∑
b2B

∑
a2A

lim
H2D

f (H; (a; b))

But limH2D f (H; (a; b)) = g(a; b), so∑
a2A

∑
b2B

g(a; b) =
∑

(a;b)2A�B

g(a; b) =
∑
b2B

∑
a2A

g(a; b):

So we're done.



Boolean algebras

A Boolean algebra on a set X is an element B of }(}(X )), i.e. a
set of subsets of X , such that

I ? 2 B,

I If E 2 B then X n E 2 B, and

I If E ;F 2 B then E [ F 2 B.

This de�nition is minimal, to make it easier to prove something is

a Boolean algebra. For example, it omits the fact that if E ;F 2 B

then E \ F 2 B, because that follows from the conditions above.

E \ F = X n ((X n E ) [ (X n F )):

By induction, �nite unions and intersections of elements of B

belong to B. Similarly E n F 2 B and E4F 2 B. Also X 2 B.



Why \Boolean"?

We can relate logical operations to set operations, by identifying

statements with the subset of elements for which they are true.

This was discussed in Lecture 10.

AND, OR and NOT correspond to union, intersection and

(relative) complement. These are called Boolean operators,

because of their connection with George Boole's An Investigation

of the Laws of Thought on Which are Founded the Mathematical

Theories of Logic and Probabilities. You've probably used them in

search engines of various kinds.

A Boolean algebra is (roughly) one whose set membership

statements are closed under Boolean operators. Don't take this

too seriously! The set of valid statements in a language with a

�nite alphabet must be countable, but Boolean algebras can be

uncountable, e.g. }(N).



Why \algebra"?

What do Boolean algebras have to do with algebras? The

operations 4 and \ satisfy the relations

I (A4B)4C = A4(B4C ),

I A4B = B4A,

I A4? = A,

I A4A = ?,

I (A \ B) \ C = A \ (B \ C ),

I A \ B = B \ A,

I X \ A = A,

I A \ (B4C ) = (A \ B)4(A \ C ).

In other words, a Boolean algebra B on X is a commutative ring,

with 4 as addition, \ as multiplication, ? as additive identity and

X as multiplicative identity. F = f?;Xg is a subring of B, and is

a �eld. B is an algebra over F .



Intervals (1/2)

The set of intervals in R is not a Boolean algebra. It's not closed

under complements or unions, since the complement of an

interval or the union of two intervals needn't be an interval. The

set I of �nite unions of intervals is a Boolean algebra though.

This is painful to prove by brute force since there are just too

many types of interval.

The simplest way to prove it is to �nd a single property which

characterises intervals. There are a few options: I 2 }(R) is an
interval if and only if

I I is connected

I I is convex

I I is such that if x � y � z and x ; z 2 I then y 2 I

The third option is the easiest to work with. This would apply

equally well with [�1;+1] in place of R.



Intervals (2/2)

See the notes for

I A proof that I satis�es the third condition if and only if it is

of one of the ten forms (a; b), [a; b], [a; b), (a; b], (a;+1),
[a;+1), (�1; b), (�1; b], (�1;+1) or ?.

I A proof of the geometrically plausible fact that the

complement of an interval is the union of two (possibly

empty) intervals.

I A proof that the intersection of arbitrarily many intervals is

an interval.

We don't need the last of these facts in showing that I. is a

Boolean algebra.

Consider the language obtained by taking inequalities, strict or

weak, between a variable x and a constant, and connecting them

by Boolean operators. E 2 I if and only if E is the set of x 2 R

satisfying a statement in this language.



A weird fact

If E 2 }(R) is a union of m intervals then X n E is a union m + 1

intervals. Some of them might be empty. In the notes I prove

that it's a union of �nitely many intervals but I don't prove the

optimal bound of m + 1.

It seems obvious then that if E is a union of countably many

intervals then X n E must be a union of countably many intervals.

But this is not true! If C is the Cantor set and E = R n C then E

is the union of countably many intervals but X n C is not!


