MAU22200 Lecture 39

John Stalker

Trinity College Dublin

1 February 2022

The Dominated Convergence Theorem (1/6)

Suppose S is a set and $f: \mathbb{N} \times S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ are functions such that $\lim_{n\to\infty} f_n(s)$ exists for all $s \in S$, $\sum_{s\in S} g(s) < +\infty$ and

 $|f_n(s)| \leq g(s)$

for all $n \in \mathbf{N}$ and $s \in S$. Then

$$\lim_{n\to\infty}\sum_{s\in S}f_n(s)=\sum_{s\in S}\lim_{n\to\infty}f_n(s).$$

This is known as the Dominated Convergence Theorem (for sums). Note that our counterexample from Lecture 37 doesn't satisfy the hypotheses of this theorem. It was $S = \mathbf{N}$ and

$$f_n(s) = \begin{cases} 1 & \text{if } s = n, \\ 0 & \text{if } s \neq n. \end{cases}$$

The Dominated Convergence Theorem (2/6)

$$f_n(s) = \begin{cases} 1 & \text{if } s = n, \\ 0 & \text{if } s \neq n. \end{cases}$$

If $|f_n(s)| \le g(s)$ for all $n \in \mathbb{N}$ and $s \in S$ then $g(s) \ge 1$ for all s. But then $\sum_{s \in S} g(s) = +\infty$.

This example also didn't satisfy the hypotheses of the Monotone Convergence Theorem. That's a good thing, not a bad thing. It doesn't satisfy the conclusion of either theorem, so if it satisfied the hypotheses then we'd have a contradiction.

It does satisfy the hypotheses of Fatou's Lemma, but that's okay because Fatou's Lemma doesn't have

$$\lim_{n\to\infty}\sum_{s\in S}f_n(s)=\sum_{s\in S}\lim_{n\to\infty}f_n(s)$$

in its conclusion.

The Dominated Convergence Theorem (3/6)Define

$$h_n(s) = g(s) + f_n(s)$$

 $h_n(s) \ge 0$ so we can apply Fatou's Lemma:

r

$$\sum_{s\in S} \sup_{m\in\mathbb{N}} \inf_{n\geq m} h_n(s) \leq \sup_{m\in\mathbb{N}} \inf_{n\geq m} \sum_{s\in S} h_n(s).$$

$$\sup_{m\in\mathbb{N}}\inf_{n\geq m}h_n(s) = g(s) + \sup_{m\in\mathbb{N}}\inf_{n\geq m}f_n(s)$$
$$\sum_{s\in S}h_n(s) = \sum_{s\in S}g(s) + \sum_{s\in S}f_n(s).$$

$$\sum_{s \in S} \sup_{m \in \mathbb{N}} \inf_{n \ge m} h_n(s) = \sum_{s \in S} g(s) + \sum_{s \in S} \sup_{m \in \mathbb{N}} \inf_{n \ge m} f_n(s)$$
$$\sup_{m \in \mathbb{N}} \inf_{n \ge m} \sum_{s \in S} h_n(s) = \sum_{s \in S} g(s) + \sup_{m \in \mathbb{N}} \inf_{n \ge m} \sum_{s \in S} f_n(s).$$

The Dominated Convergence Theorem (4/6)

Combining the results from the previous slide,

$$\sum_{s\in S} g(s) + \sum_{s\in S} \sup_{m\in\mathbb{N}} \inf_{n\geq m} f_n(s) \leq \sum_{s\in S} g(s) + \sup_{m\in\mathbb{N}} \inf_{n\geq m} \sum_{s\in S} f_n(s).$$

The cancellation property isn't generally true in $[-\infty, +\infty]$, but we can cancel finite summands and $\sum_{s \in S} g(s)$ is finite.

$$\sum_{s\in S} \sup_{m\in\mathbb{N}} \inf_{n\geq m} f_n(s) \leq \sup_{m\in\mathbb{N}} \inf_{n\geq m} \sum_{s\in S} f_n(s).$$

Note that the conclusion is the same as for Fatou's Lemma, but f doesn't satisfy the hypothesis $f_n(s) \in [0, +\infty]$ from Fatou's Lemma, which is why we need the argument above. $\lim_{n\to\infty} f_n(s)$ exists so we can replace $\sup_{m\in\mathcal{N}} \inf_{n\geq m} f_n(s)$ with $\lim_{n\to\infty} f_n(s)$.

The Dominated Convergence Theorem (5/6)

We now have

$$\sum_{s\in S} \lim_{n\to\infty} f_n(s) \leq \sup_{m\in\mathbb{N}} \inf_{n\geq m} \sum_{s\in S} f_n(s).$$

The only properties of f we used are that $|f_n(s)| \le g(s)$ for all $s \in S$ and that $\lim_{n\to\infty} f_n(s)$ exists. -f has the same properties, so

$$\sum_{s \in S} \lim_{n \to \infty} -f_n(s) \leq \sup_{m \in \mathbb{N}} \inf_{n \geq m} \sum_{s \in S} -f_n(s).$$
$$-\sum_{s \in S} \lim_{n \to \infty} f_n(s) \leq -\inf_{m \in \mathbb{N}} \sup_{n \geq m} \sum_{s \in S} f_n(s).$$
$$\inf_{m \in \mathbb{N}} \sup_{n \geq m} \sum_{s \in S} f_n(s) \leq \sum_{s \in S} \lim_{n \to \infty} f_n(s).$$

The Dominated Convergence Theorem (6/6) From

$$\sum_{s\in S} \lim_{n\to\infty} f_n(s) \le \sup_{m\in\mathbb{N}} \inf_{n\ge m} \sum_{s\in S} f_n(s)$$

and

$$\inf_{m\in\mathbb{N}}\sup_{n\geq m}\sum_{s\in\mathcal{S}}f_n(s)\leq \sum_{s\in\mathcal{S}}\lim_{n\to\infty}f_n(s)$$

we get

$$\inf_{m\in\mathbb{N}}\sup_{n\geq m}\sum_{s\in S}f_n(s)\leq \sup_{m\in\mathbb{N}}\inf_{n\geq m}\sum_{s\in S}f_n(s)$$

The lemma from last time shows that

$$\lim_{n\to\infty}\sum_{s\in S}f_n(s)$$

exists and is equal to their common value. It follows that

$$\lim_{n\to\infty}\sum_{s\in S}f_n(s)=\sum_{s\in S}\lim_{n\to\infty}f_n(s)$$

Sums of sums (1/6)

Suppose \mathcal{A} is a set of disjoint sets. In other words if $P, Q \in \mathcal{A}$ and $P \neq Q$ then $P \cap Q = \emptyset$. Let $S = \bigcup_{P \in \mathcal{A}} P$. Suppose $f: S \rightarrow [0, +\infty]$ is a function. Then

$$\sum_{s\in S} f(s) = \sum_{P\in\mathcal{A}} \sum_{s\in P} f(s).$$

These are sums of elements of $[0, +\infty]$, and so converge in $[0, +\infty]$. Suppose $F \subseteq S$ is finite.

$$F = \bigcup_{P \in \mathcal{B}} P \cap F.$$

where $\mathcal{B} = \{P \in \mathcal{A}, P \cap F \neq \emptyset\}$. This is a finite union of finite disjoint sets so

$$\sum_{s\in F} f(s) = \sum_{P\in\mathcal{B}} \sum_{s\in P\cap F} f(s).$$

Sums of sums (2/6) $P \cap F \subseteq P$ and $f(s) \in [0, +\infty]$ so

$$\sum_{s\in P\cap F} f(s) \le \sum_{s\in P} f(s)$$

and therefore

$$\sum_{P \in \mathcal{B}} \sum_{s \in P \cap F} f(s) \le \sum_{P \in \mathcal{B}} \sum_{s \in P} f(s).$$

Also, $\mathcal{B} \subseteq \mathcal{A}$ and

$$\sum_{s\in P} f(s) \in [0, +\infty]$$

for all $P \in \mathcal{A}$ so

$$\sum_{P\in\mathcal{B}}\sum_{s\in P}f(s)\leq \sum_{P\in\mathcal{A}}\sum_{s\in P}f(s).$$

Combining the previous results,

$$\sum_{s\in F} f(s) \le \sum_{P\in\mathcal{A}} \sum_{s\in P} f(s)$$

Sums of sums (3/6)

Taking limits in

$$\sum_{s\in F} f(s) \le \sum_{P\in\mathcal{A}} \sum_{s\in P} f(s)$$

with respect to the net of finite subsets F of S gives

$$\sum_{s\in S} f(s) \le \sum_{P\in\mathcal{A}} \sum_{s\in P} f(s)$$

Next we prove the reverse inequality. Suppose that $\mathcal{G} \subseteq \mathcal{A}$ is finite. Then

$$\sum_{P \in \mathcal{G}} \sum_{s \in P} f(s) = \sum_{P \in \mathcal{G}} \sup \sum_{s \in F_P} f(s)$$

where the supremum is over finite subsets F_P of P. This is the same as

$$\sup \sum_{P \in \mathcal{G}} \sum_{s \in F_P} f(s)$$

where the supremum is over all choices of an F_P for each $P \in \mathcal{G}$.

Sums of sums (4/6)

Each choice of an F_P for each $P \in \mathcal{G}$ is uniquely determined by the set

$$H=\bigcup_{P\in\mathcal{G}}F_P$$

which is a finite subset of S with the property that $H \cap Q = \emptyset$ if $Q \notin \mathcal{G}$, because P_F can be recovered from H by

$$F_P = H \cap P.$$

Therefore

$$\sum_{P \in \mathcal{G}} \sum_{s \in P} f(s) = \sup \sum_{P \in \mathcal{G}} \sum_{s \in H \cap P} f(s) = \sup \sum_{s \in H} f(s),$$

where the supremum is over all such finite subsets H. This is less than or equal to the supremum over all finite subsets, which is just $\sum_{s \in S} f(s)$ by definition, so

$$\sum_{P\in\mathcal{G}}\sum_{s\in P}f(s)\leq \sum_{s\in S}f(s).$$

Sums of sums (5/6)

Taking the supremum of

$$\sum_{P \in \mathcal{G}} \sum_{s \in P} f(s) \le \sum_{s \in S} f(s)$$

over all finite subsets ${\mathcal G}$ of ${\mathcal A}$ gives

$$\sum_{P\in\mathcal{A}}\sum_{s\in P}f(s)\leq \sum_{s\in S}f(s).$$

Since we already have the reverse inequality we conclude that

$$\sum_{s\in S} f(s) = \sum_{P\in\mathcal{A}} \sum_{s\in P} f(s).$$

This completes the proof that

$$\sum_{s\in S} f(s) = \sum_{P\in\mathcal{A}} \sum_{s\in P} f(s).$$

Sums of sums (6/6)

Two consequences of the theorem are particularly important. Suppose $S = P \cup Q$, $P \cap Q = \emptyset$ and $f : S \rightarrow [0 + \infty]$ is a function. Then

$$\sum_{s\in S} f(s) = \sum_{s\in P} f(s) + \sum_{s\in Q} f(s).$$

This is just the proposition above with $\mathcal{A} = \{P, Q\}$. Suppose A and B are sets and $f : A \times B \rightarrow [0, +\infty]$ is a function. Then

$$\sum_{a \in A} \sum_{b \in B} f(a, b) = \sum_{(a, b) \in A \times B} f(a, b) = \sum_{b \in B} \sum_{a \in A} f(a, b).$$

This is known as Tonelli's Theorem and will be proved next time. That proof will be our first application of the convergence theorems for sums.