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The Dominated Convergence Theorem (1/6)

Suppose S isasetand f-NxS —-Randg: S —- R
are functions such that lim,_,« f2(S) exists for alls € S,

Y scs 9(5) < 400 and
7a(s) < g(s)

forallne N ands e S. Then

Jim, 2 () = 2 fim, )
s€S s€S

This is known as the Dominated Convergence Theorem (for
sums). Note that our counterexample from Lecture 37 doesn't
satisfy the hypotheses of this theorem. It was S = N and

1 if s=n,
fa(s) = _
0 ifs#n.



The Dominated Convergence Theorem (2/6)

1 ifs=n,
fn(s) - .
0 ifs#n.

If |f7(s)| < g(s) forall ne€ N and s € S then g(s) > 1 for all s.
But then ) .5 9(s) = +oo.

This example also didn't satisfy the hypotheses of the Monotone
Convergence Theorem. That's a good thing, not a bad thing. It
doesn’t satisfy the conclusion of either theorem, so if it satisfied
the hypotheses then we'd have a contradiction.

It does satisfy the hypotheses of Fatou’s Lemma, but that's okay
because Fatou’'s Lemma doesn’t have

jim S 05) = 3 i 69
seS sES

in its conclusion.



The Dominated Convergence Theorem (3/6)

Define

= 9(5) + fa(s)

hn(s) > 0 so we can apply Fatou's Lemma:

Z sup inf hp(
SesmEN” m

sup inf hp(s) =

meN nzm

Zhn(s

seS

Zsup inf hp(s) =

pore meN nzm

sup inf Z hn(s
€S

méeN ”>’77

) < sup inf Zh

meN n>m

g(s) + sup inf fo(s)

meN n=2m

) =3 g(s)+ 3 fuls):

s€S seSs

Zg Z sup inf fu(s)
seSs ses M meN nzm
Zg + sup inf an(s).

seS — s&Ss



The Dominated Convergence Theorem (4/6)

Combining the results from the previous slide,

Zg(s)+Zsup inf f( <Zg s) + sup inf fr(s).

n>m n>m
s€S scs MeEN s€S méeN s€S

The cancellation property isn't generally true in [—o0, +00], but
we can cancel finite summands and ) .5 g(s) is finite.

Zsup inf fh(s) < sup |nf an

ses meN nzm meN nzm

Note that the conclusion is the same as for Fatou’s Lemma, but
f doesn't satisfy the hypothesis ,(s) € [0, +o0] from Fatou's
Lemma, which is why we need the argument above. lim,_, f5(5)
exists so we can replace sup e infp>m fr(S) with lim, o f4(5).



The Dominated Convergence Theorem (5/6)

We now have

lim f,(s) < sup inf fa(s).
;Sn—wo n( ) meN anseS n( )

The only properties of f we used are that |f,(s)| < g(s) for all
s € S and that lim,_oo fn(S) exists. —f has the same properties,
SO

lim —f,(s) < sup inf —1n(5)-
Sezsnﬁoo n( ) meN anseS n( )

- lim f,(s) < — inf su fh(s).
Sezsnaoo n( )_ mENn>gs€ZS n( )

inf sup E fa(s) < E Ii_>m fa(s).
n—oo
€S

meN
ans seS



The Dominated Convergence Theorem (6/6)

From
2 Jim, (s) < sup jnf 3 (o)
and
i, sup 2 () < ) Jim, £
we get
inf ”55575625 fols) < sup ”Ig"ses fa(s)

The lemma from last time shows that
i
Jim, 2 (<)
SES
exists and is equal to their common value. It follows that

Jim, 2 fols) =2 Jim fo(s)

seS SES



Sums of sums (1/6)

Suppose A is a set of disjoint sets. In other words if
P.QeAand P # Q then PNQ = 3. Let S = Jpe 4 P-
Suppose f: S — [0, +o0] is a function. Then

D fls) =D f(s).

seS PcAseP

These are sums of elements of [0, +o0c], and so converge in
[0, +00].
Suppose F C S is finite.

F=|JPnF.
PeB

where B={P € A,PNF # @}. This is a finite union of finite

disjoint sets so
D)= D f(s).

seF PeBsePNF



Sums of sums (2/6)
PNF CPand f(s) € [0, +o0] so

> ()< f(s)

SEPNF seP
and therefore
I IRICESIDRIO]
PeB sePNF PeBseEP
Also, B C A and
> f(s) € [0, +o0]
seP
forall P € A so
SN )< DD f(s).
PeEB scP PcAseP

Combining the previous results,

> fs) < DD f(s).

seF PeAseP



Sums of sums (3/6)

Taking limits in
RIOEDIPNIO

seF PEAseEP
with respect to the net of finite subsets F of S gives

RIOEDIPNIO
seS PecAscP

Next we prove the reverse inequality.
Suppose that G C A is finite. Then

DD fs) =2 sup ) £(s)
Peg seP Peg SEFp
where the supremum is over finite subsets Fp of P. This is the

same as
supz Z f(s)

Peg seFp

where the supremum is over all choices of an Fp for each P € G.



Sums of sums (4/6)

Each choice of an Fp for each P € G is uniquely determined by

the set
H= ] Fp,
Peg
which is a finite subset of S with the property that HN Q = @ if
QR ¢ G, because Pr can be recovered from H by

Fp=HNP.
Therefore
Z Z f(s) = sup Z Z f(s) = supz f(s),
PegGscP PegG seHNP seH

where the supremum is over all such finite subsets H. This is less
than or equal to the supremum over all finite subsets, which is
just Y- ccs f(s) by definition, so

Z Z f(s) < Z f(s).

PegG seP seSs



Sums of sums (5/6)

Taking the supremum of

DN () <D f(s)

Peg seP SES

over all finite subsets G of A gives

DN f(s) <D f(s).

PeAscP sES

Since we already have the reverse inequality we conclude that
D_fs)=2_ > f(s).
sSES PcAscP

This completes the proof that

D fls) =D f(s).

sES PcAseP



Sums of sums (6/6)

Two consequences of the theorem are particularly important.
Suppose S=PUQ, PNQ=@andf:S—=[0+0o0] is
a function. Then

D Es) =D f(s)+ D f(s).

seS seP SEQ

This is just the proposition above with A = {P, Q}.
Suppose A and B are sets and f: Ax B — [0, +o0] is a
function. Then

SN faby= > flab)y=> Y f(ab).

acAbeB (a,b)eAxB beB acA

This is known as Tonelli's Theorem and will be proved next time.
That proof will be our first application of the convergence
theorems for sums.



