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The Dominated Convergence Theorem (1/6)
Suppose S is a set and f : N � S ! R and g : S ! R

are functions such that limn!1 fn(s) exists for all s 2 S,∑
s2S g(s) < +1 and

jfn(s)j � g(s)

for all n 2 N and s 2 S. Then

lim
n!1

∑
s2S

fn(s) =
∑
s2S

lim
n!1

fn(s):

This is known as the Dominated Convergence Theorem (for

sums). Note that our counterexample from Lecture 37 doesn't

satisfy the hypotheses of this theorem. It was S = N and

fn(s) =

{
1 if s = n;

0 if s 6= n:



The Dominated Convergence Theorem (2/6)

fn(s) =

{
1 if s = n;

0 if s 6= n:

If jfn(s)j � g(s) for all n 2 N and s 2 S then g(s) � 1 for all s.

But then
∑

s2S g(s) = +1.

This example also didn't satisfy the hypotheses of the Monotone

Convergence Theorem. That's a good thing, not a bad thing. It

doesn't satisfy the conclusion of either theorem, so if it satis�ed

the hypotheses then we'd have a contradiction.

It does satisfy the hypotheses of Fatou's Lemma, but that's okay

because Fatou's Lemma doesn't have

lim
n!1

∑
s2S

fn(s) =
∑
s2S

lim
n!1

fn(s)

in its conclusion.



The Dominated Convergence Theorem (3/6)
De�ne

hn(s) = g(s) + fn(s)

hn(s) � 0 so we can apply Fatou's Lemma:∑
s2S

sup
m2N

inf
n�m

hn(s) � sup
m2N

inf
n�m

∑
s2S

hn(s):

sup
m2N

inf
n�m

hn(s) = g(s) + sup
m2N

inf
n�m

fn(s)∑
s2S

hn(s) =
∑
s2S

g(s) +
∑
s2S

fn(s):

∑
s2S

sup
m2N

inf
n�m

hn(s) =
∑
s2S

g(s) +
∑
s2S

sup
m2N

inf
n�m

fn(s)

sup
m2N

inf
n�m

∑
s2S

hn(s) =
∑
s2S

g(s) + sup
m2N

inf
n�m

∑
s2S

fn(s):



The Dominated Convergence Theorem (4/6)

Combining the results from the previous slide,∑
s2S

g(s) +
∑
s2S

sup
m2N

inf
n�m

fn(s) �
∑
s2S

g(s) + sup
m2N

inf
n�m

∑
s2S

fn(s):

The cancellation property isn't generally true in [�1;+1], but
we can cancel �nite summands and

∑
s2S g(s) is �nite.∑

s2S

sup
m2N

inf
n�m

fn(s) � sup
m2N

inf
n�m

∑
s2S

fn(s):

Note that the conclusion is the same as for Fatou's Lemma, but

f doesn't satisfy the hypothesis fn(s) 2 [0;+1] from Fatou's

Lemma, which is why we need the argument above. limn!1 fn(s)
exists so we can replace supm2N infn�m fn(s) with limn!1 fn(s).



The Dominated Convergence Theorem (5/6)

We now have ∑
s2S

lim
n!1

fn(s) � sup
m2N

inf
n�m

∑
s2S

fn(s):

The only properties of f we used are that jfn(s)j � g(s) for all
s 2 S and that limn!1 fn(s) exists. �f has the same properties,

so ∑
s2S

lim
n!1

�fn(s) � sup
m2N

inf
n�m

∑
s2S

�fn(s):

�
∑
s2S

lim
n!1

fn(s) � � inf
m2N

sup
n�m

∑
s2S

fn(s):

inf
m2N

sup
n�m

∑
s2S

fn(s) �
∑
s2S

lim
n!1

fn(s):



The Dominated Convergence Theorem (6/6)
From ∑

s2S

lim
n!1

fn(s) � sup
m2N

inf
n�m

∑
s2S

fn(s)

and

inf
m2N

sup
n�m

∑
s2S

fn(s) �
∑
s2S

lim
n!1

fn(s)

we get

inf
m2N

sup
n�m

∑
s2S

fn(s) � sup
m2N

inf
n�m

∑
s2S

fn(s)

The lemma from last time shows that

lim
n!1

∑
s2S

fn(s)

exists and is equal to their common value. It follows that

lim
n!1

∑
s2S

fn(s) =
∑
s2S

lim
n!1

fn(s)



Sums of sums (1/6)
Suppose A is a set of disjoint sets. In other words if

P;Q 2 A and P 6= Q then P\Q = ?. Let S =
⋃
P2A P.

Suppose f : S ! [0;+1] is a function. Then∑
s2S

f (s) =
∑
P2A

∑
s2P

f (s):

These are sums of elements of [0;+1], and so converge in

[0;+1].
Suppose F � S is �nite.

F =
⋃
P2B

P \ F :

where B = fP 2 A;P \ F 6= ?g. This is a �nite union of �nite

disjoint sets so ∑
s2F

f (s) =
∑
P2B

∑
s2P\F

f (s):



Sums of sums (2/6)
P \ F � P and f (s) 2 [0;+1] so∑

s2P\F

f (s) �
∑
s2P

f (s)

and therefore ∑
P2B

∑
s2P\F

f (s) �
∑
P2B

∑
s2P

f (s):

Also, B � A and ∑
s2P

f (s) 2 [0;+1]

for all P 2 A so ∑
P2B

∑
s2P

f (s) �
∑
P2A

∑
s2P

f (s):

Combining the previous results,∑
s2F

f (s) �
∑
P2A

∑
s2P

f (s):



Sums of sums (3/6)
Taking limits in ∑

s2F

f (s) �
∑
P2A

∑
s2P

f (s)

with respect to the net of �nite subsets F of S gives∑
s2S

f (s) �
∑
P2A

∑
s2P

f (s)

Next we prove the reverse inequality.

Suppose that G � A is �nite. Then∑
P2G

∑
s2P

f (s) =
∑
P2G

sup
∑
s2FP

f (s)

where the supremum is over �nite subsets FP of P. This is the

same as

sup
∑
P2G

∑
s2FP

f (s)

where the supremum is over all choices of an FP for each P 2 G.



Sums of sums (4/6)
Each choice of an FP for each P 2 G is uniquely determined by

the set

H =
⋃
P2G

FP ;

which is a �nite subset of S with the property that H \Q = ? if

Q =2 G, because PF can be recovered from H by

FP = H \ P:

Therefore∑
P2G

∑
s2P

f (s) = sup
∑
P2G

∑
s2H\P

f (s) = sup
∑
s2H

f (s);

where the supremum is over all such �nite subsets H. This is less

than or equal to the supremum over all �nite subsets, which is

just
∑

s2S f (s) by de�nition, so∑
P2G

∑
s2P

f (s) �
∑
s2S

f (s):



Sums of sums (5/6)
Taking the supremum of∑

P2G

∑
s2P

f (s) �
∑
s2S

f (s)

over all �nite subsets G of A gives∑
P2A

∑
s2P

f (s) �
∑
s2S

f (s):

Since we already have the reverse inequality we conclude that∑
s2S

f (s) =
∑
P2A

∑
s2P

f (s):

This completes the proof that∑
s2S

f (s) =
∑
P2A

∑
s2P

f (s):



Sums of sums (6/6)

Two consequences of the theorem are particularly important.

Suppose S = P [Q, P \Q = ? and f : S ! [0+1] is
a function. Then∑

s2S

f (s) =
∑
s2P

f (s) +
∑
s2Q

f (s):

This is just the proposition above with A = fP;Qg.

Suppose A and B are sets and f : A� B ! [0;+1] is a

function. Then∑
a2A

∑
b2B

f (a; b) =
∑

(a;b)2A�B

f (a; b) =
∑
b2B

∑
a2A

f (a; b):

This is known as Tonelli's Theorem and will be proved next time.

That proof will be our �rst application of the convergence

theorems for sums.


