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Limits and sums

We saw last time that

i Y6 = X
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can fail even when all the limits and sums exist. We need
theorems which tell us this equation does hold under some
hypotheses on f, or that something weaker, e.g. an inequality,
holds under weaker hypotheses. There are three main theorems
of this type:

» The Monotone Convergence Theorem

> Fatou’s Lemma

» The Dominated Convergence Theorem

Each of these will later be seen to be a special case of a theorem
for integrals, but it's convenient to have the special cases earlier.



The Monotone Convergence Theorem (1/4)

Suppose S isa set and f: Nx S — [0, +00] is a function
such that if m < n then fi(s) < fp(s) foralls € S. Then

Jim, 2 fols) = 2 lim, (o).
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This is called the Monotone Convergence Theorem (for sums).
Because fy(s) < fo(s) if m < n the limit

lim 7,(s)

n—oo

exists (in [0, +oc]) for all s € S. Because f,(s) € [0, +o0] the sum

> fals)
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exists (in [0, +oc]) for all n € N.



The Monotone Convergence Theorem (2/4)

From fn(s) < fa(s) it follows that

D fn(s) <D fals).
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Y scs fn(s) is therefore monotone increasing in n. So

limses D ccs fa(s) exists (in [0, +00]).

limp o0 fa(s) € [0, +o0] forall s € S s0 Y- s limy 00 fa(S) exists
(in [0, 4+00]).

So both sides of the equation

nmto,, Z lim_fo(s
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are meaningful. None of this would have worked in [0, +o0),
which is why we introduced the extended reals. We still need to
show both sides are equal though.



The Monotone Convergence Theorem (3/4)

fa(s) is an increasing sequence in n for each s so

lim f,(s) = sup fp(s).

n—o0 HEN
So
fa(s) < nILngo fa(s).
Therefore
RACEDD lim_£(s)-
) =)

Suppose F is a finite subset of S. Then

S fuls) < 3 fals):
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i (0 < fm, (2,
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The Monotone Convergence Theorem (4/4)

i X500 < i 36
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We can interchange limits and finite sums so

i Y65 = X i 69
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Therefore

2 fim fo(s) < Jim D _ (o).

seF sES
Taking the limit over F,

2 Jim, fols) < Jim, 3 fo(s)
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We now have the inequality in both directions.



Fatou’s Lemma (1/3)

Suppose S is a set and f: Nx S — [0, +o¢] is a function.
Then

Zsup inf f(s) < sup inf fa(s).
scs meN n>m meN n>ms€$

This is called Fatou's Lemma. Define
Im(s )— inf fp(s).

If 1 < mthen g)(s) < gm(s). In other words, gm(s) is a monotone
function of m for each s € S. Also, Y .5 9i(5) < > scs Im(S).
SO Y scs 9m(s) is a monotone function of m. Therefore

lim gm(s) = sup gm(s)

m—0o0 meN
nJlT]oong( = sup ng
seS méeN sES



Fatou’s Lemma (2/3)

By the Monotone Convergence Theorem

Jim, 3 am(s) = 3 lim_an()

s€S s€S
sup ng(s) = Z sup gm(s)-
meN scS scS meN
If / < m then
9i(s) = inf f(s) < fm(s).
n>1
SO
> ai(s) <D fnls).
seS seS

Taking the infimum over m > | gives

Zg,(s) < ,'2,';2 fm(s).

sesS - s€S



Fatou’s Lemma (3/3)

ng < inf fa(s).

m>n
SES sEeS
sup ng < sup |n>f fa(s).
meN 5 meN M0 g

Z sup gm(s) < sup inf fa(s).
scs meN meN mZ”Se;

Zsup inf f5(s) < sup inf fa(s).
SESmENn>n7 mENIﬂZnses
So we're done. We saw that inf >, f,(s) is monotone in m so
SUPmen iNfr>m fa(s) is the same as lim o0 infp>m f(s). That's
why this is usually written as liminf,_, f,(s). Fatou's Lemma is
usually written in terms of liminf rather than supinf but for our
purposes supinf is a more useful way to think about it.



A useful lemma

For sequences in R it's true that

sup inf @, < inf sup @,

meN n=m meN p>mp

provided both sides exist. Furthermore, if

inf sup @, < sup |nf ©n

meN n>m meN nzm

then lim, .4 @, exists and

sup inf @, = I|m ©n = inf sup @,.

meN n>m meN p>m

This can be improved in two ways: We can replace sequences by
nets. We can replace R by any interval in [—oo, +00]. See the
notes for details. Also for any example of how to deal with
[—00, +00] without case by case analysis.



