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Convergence and absolute convergence

A series
∑1

j=0 �j (in R) is called convergent if the sequence of

partial sums �n =
∑n

j=0 �j converges (in R). The series is called

absolutely convergent if the sequence of sums of absolute values

�n =
∑n

j=0 j�j j converges (in R).

The words \in R" were previously redundant, but the sequence �

is a monotone sequence in [0;+1] and so always converges in

[0;+1]. It converges absolutely in R if and only if

1∑
j=0

j�j j < +1:

Every absolutely convergent series is convergent. Ultimately this

follows from completeness. It isn't true in Q. Not every

convergent series is absolutely convergent.
∑1

j=0(�1)
j=(j + 1) is

convergent, but not absolutely convergent.



Sums

If S is a set and f : S ! R is a function then the sum
∑

s2S f (s)
is said to be convergent (in R) if the net of partial sums∑

s2F f (s) is convergent (in R), where F ranges over the �nite

subsets of S , ordered by inclusion.
∑

s2S f (s) is said to be

absolutely convergent (in R) if the net of partial sums∑
s2F jf (s)j is convergent (in R). The net of these partial sums is

monotone, so
∑

s2S f (s) is always absolutely convergent in

[0;+1]. It's convergent in R if and only if∑
s2S

jf (s)j < +1:

Every absolutely convergent sum is convergent, just as for series.

Every convergent sum is absolutely convergent, unlike for series!



The Comparison Test

Every absolutely convergent sum is convergent. This is a

consequence of the comparison test.

Suppose that u and v are functions from a set S to R. If

ju(s)j � jv(s)j and
∑

s2S jv(s)j < +1 then
∑

s2S u(s)
converges in R.

This is analogous to the comparison test for series. The

statement at the top is the special u = v .

Here's a strategy for the proof of the proposition: The condition∑
s2S jv(s)j < +1 is equivalent to convergence in R.

Convergence of a sum is de�ned to mean convergence of the net

of partial sums over �nite subsets. Convergence of nets in R is

equivalent to the Cauchy condition. So we show that if the net of

sums of absolute values of v over �nite subsets is Cauchy then so

is the net of sums of u over �nite subsets.



Proof of Comparison Test (1/3)

Suppose then that for every � > 0 there is a �nite F such that if

F � G and F � H then∣∣∣∣∣∑
s2G

jv(s)j �
∑
s2H

jv(s)j

∣∣∣∣∣ < �:

This is just the Cauchy condition for
∑

s2S jv(s)j. It applies to
H = F , since F � F .∣∣∣∣∣∑

s2G

jv(s)j �
∑
s2F

jv(s)j

∣∣∣∣∣ < �:

∑
s2G

jv(s)j �
∑
s2F

jv(s)j =
∑

s2GnF

jv(s)j � 0

because F � G and jv(s)j � 0.



Proof of Comparison Test (2/3)∑
s2G

u(s)�
∑
s2F

u(s) =
∑

s2GnF

u(s) �
∑

s2GnF

jv(s)j < �

since u(s) � ju(s)j � jv(s)j. The same argument applied to

u(s) � �ju(s)j � �jv(s)j gives∑
s2G

u(s)�
∑
s2F

u(s) > ��:

So if F � G then ∣∣∣∣∣∑
s2G

u(s)�
∑
s2F

u(s)

∣∣∣∣∣ < �:

Similarly, if F � H then∣∣∣∣∣∑
s2H

u(s)�
∑
s2F

u(s)

∣∣∣∣∣ < �:



Proof of Comparison Test (3/3)

If both F � G and F � H then∣∣∣∣∣∑
s2G

u(s)�
∑
s2H

u(s)

∣∣∣∣∣ < 2�:

For every � > 0 there is an F with this property, which is the

Cauchy condition for
∑

s2S u(s), except with 2� in place of �, but

that's easily dealt with. So we're done.



The converse (1/2)
The converse, that

∑
s2S ju(s)j < +1 if

∑
s2S u(s) converges, is

more interesting.

We use the Cauchy condition again. For any � > 0 there is a

�nite F � S such that if G ;H are �nite subsets of S satisfying

F � G and F � H then∣∣∣∣∣∑
s2G

u(s)�
∑
s2H

u(s)

∣∣∣∣∣ < �:

For any �nite K � S we choose

G = fs 2 F [ K : s 2 F or u(s) > 0g;

H = fs 2 F [ K : s 2 F or u(s) < 0g:

Then G , H have the properties listed above and∑
s2G

u(s)�
∑
s2H

u(s) =
∑

s2KnF

ju(s)j:



The converse (2/2)

∑
s2KnF

ju(s)j < �

So ∑
s2K

ju(s)j =
∑

s2K\F

ju(s)j+
∑

s2KnF

ju(s)j �
∑
s2F

ju(s)j+ �:

Choose any � > 0 and the corresponding F . The inequality above

then holds for all K . Taking the limit over all �nite subsets K

gives ∑
s2S

ju(s)j �
∑
s2F

ju(s)j+ � < +1:

So we're done.



Convergence theorems (1/2)
The next question we need to address is whether we can

exchange sums and limits. Consider S = N and

fn(s) =

{
1 if s = n;

0 if s 6= n:

lim
n!1

fn(s) = 0

for every s because fn(s) = 0 for all n > s. So∑
s2S

lim
n!1

fn(s) = 0:

∑
s2S

fn(s) = 1

for all n 2 N. So

lim
n!1

∑
s2S

fn(s) = 1



Convergence theorems (1/2)

So

lim
n!1

∑
s2S

fn(s) 6=
∑
s2S

lim
n!1

fn(s)

in this example, even though all the sums and limits converge (in

R). Next time we'll prove

lim
n!1

∑
s2S

fn(s) =
∑
s2S

lim
n!1

fn(s)

under various hypotheses on f . Although we mostly need those

results for sequences we will sometimes need them for nets, so

I've proven them in that context in the notes. In lecture I'll just

do the special case of sequences.


