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Extending the reals

The Banach-Tarski paradox from last lecture has nothing to do

with sets which are too big to attach a �nite volume to{all the

sets involved are bounded subsets of R3{but with sets which are

too ugly. But we still need to consider sets which are too big to

have a �nite volume. For this it's useful to work with the extended

reals [�1;+1] or the extended non-negative reals [0;+1].

[�1;+1] = f�1g[R[f+1g; [0;+1] = [0;+1)[f+1g:

We can extend some, but not all, of the structure of the reals to

the extended reals. For example, we extend the order relation by

�1 < x < +1

for all x 2 R.



Bounds, in�ma and suprema

In R some subsets have upper or lower bounds and some don't.

For example (0; 1) has both an upper and lower bound while Z

has neither. In [�1;+1] every subset has an upper and a lower

bound. +1 is an upper bound and �1 is a lower bound.

In R every non-empty bounded subset has an in�mum and a

supremum. In [�1;+1] every subset has an in�mum and a

supremum. For example,

inf ? = +1; sup? = �1

It's in this sense that we can say infs2K ;t2C d(s; t) > 0 when

C = ? or K = ? in Lecture 34.

It's not obvious that every subset has an in�mum and supremum.

The proof in the notes is fairly long and is based on case by case

analysis. It relies on the corresponding theorem for R.



Bounds, in�ma and suprema, continued

It's convenient for every subset to have an in�mum and

supremum, but we pay a (small) price.

inf A � supA

is now true only for non-empty A � [�1;+1]. For A = ? it's

false because inf ? = +1 and sup? = �1. If A 6= ? then

there's an x 2 A and we have inf A � x � supA.
Intervals are described in the way you might expect, e.g.

[a; b) = fx 2 [�1;+1] : a � x < bg even if a or b is in�nite.

This is consistent with the notation from R. It's also consistent

with the notation [�1;+1].



Arithmetic (1/2)

We can also extend the usual arithmetic operations.

w ++1 = +1+ w = +1; x +�1 = �1+ x = �1;

y �+1 = +1 � y = +1; y � �1 = �1 � y = �1;

z �+1 = +1 � z = �1; z � �1 = �1 � z = +1;

for w 2 (�1;+1], x 2 [�1;+1), y 2 (0;+1] and
z 2 [�1; 0). Also,

+1� x = +1; w ��1 = +1;

�1� w = �1; x �+1 = �1:

Somewhat reluctantly, we also de�ne

0 �+1 = +1 � 0 = 0 = 0 � �1 = �1 � 0:



Arithmetic (2/2)

Some sums and di�erences are deliberately left unde�ned, e.g.

+1�+1.

The associative, commutative and distributive laws hold, provided

all the relevant sums and products are de�ned.

Cancellation laws can fail though. From x + y = x + z it no

longer follows that y = z . A counterexample is

+1+ 0 = +1 = +1+ 1 but 0 6= 1. x + y = x + z ) y = z is

proved by subtracting x from both sides, which is �ne in R but

here the relevant di�erences are unde�ned.



Topology

The topology on [�1;+1] is the one generated by intervals of

the form (a;+1] and [�1; b), where a; b 2 [�1;+1]. This
choice makes statements like limn!1 �n = +1 have the

expected meaning, i.e. that for all K > 0 there is an m such that

if n � m then �n > K .

Addition is continuous with respect to this topology.

Multiplication is continuous except at the points (0;+1),
(0;�1), (+1; 0) and (�1; 0). It can't be continuous at

(0;+1) because

lim
n!1

1

n
� n = lim

n!1
1 = 1 6= 0 = 0 �+1 = lim

n!1

1

n
� lim
n!1

n:

There are similar examples for the other points of discontinuity.

This is why I said I was reluctant to de�ne

0 �+1 = +1 � 0 = 0 = 0 � �1 = �1 � 0:



Monotone sequences (and nets)

Now that we have a topology we can talk about convergence and

limits. Bounded monotone sequences in R converge. Actually the

same is true of nets. The limit is equal to the supremum, for

increasing sequences or nets, or to the in�mum, for decreasing

sequences or nets.

For sequences (or nets) in [�1;+1] we can drop the

boundedness assumption. This isn't obvious. The proof is again a

case by case analysis.



Sums

The extended reals may look unfamiliar but you've probably seen

them informally. Statements like

1∑
n=1

1

n
= +1

1∑
n=1

1

n2
< +1

are only really meaningful in the extended reals. Even in the

extended reals, not all sums exist.
∑
1

n=1(�1)
n does not exist,

even as an extended real number. The partial sums oscillate

between �1 and 0.

Sums of non-negative terms, i.e. of elements of [0;+1], on the

other hand, always exist as elements of [0;+1]. The proof is

easy, given the convergence of monotone nets proved earlier. You

take the directed set to be the set of �nite subsets and the net to

be the function which assigns to each such subset the

corresponding partial sum.



When and how to use the extended reals

The extended reals aren't a universal replacement for the usual

reals. Some types of argument don't work there, e.g.

convergence isn't equivalent to the Cauchy criterion. Relatedly,

there needn't be an element x 2 A such that x > supA� � or one

such that x < inf A+ �. Often it's useful to go back and forth

between the extended reals and the usual ones. For example, we

might �rst show that a sequence converges in the extended reals,

then show that the limit is �nite, so it actually converges in the

usual reals, and then conclude that it's Cauchy. Using the

extended reals generally doesn't allow us to avoid questions of

�niteness, but it can allow us to postpone them. For area/volume

it allows you to show a set isn't too ugly before worrying about

whether it's too big. For sums it allows you to show the sum isn't

too oscillatory before worrying about whether it's unbounded.


