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What is measure theory?

This semester of MAU22200 covers measure and integration.

Measure theory attempts to unify a number of closely related

concepts.

Examples include cardinality of sets, probabilities of events, areas

of subsets of the plane, volumes of subsets of three dimensional

space, etc. In this module we're primarily interested in the last

two examples, and their generalisation to n dimensions, but it's

helpful to keep the others in mind.

Cardinality The cardinality of a set is non-negative, i.e. #A � 0.

Cardinality is monotone, i.e. if A � B then #A � #B. The

cardinality of the empty set is 0, i.e. #? = 0. Cardinality is

additive, i.e. #(A [ B) + #(A \ B) = #A + #B. In particular, if

A \ B = ? then #(A [ B) = #A + #B.

Probability Suppose Ω is the set of possible outcomes of an

experiment and P(A) is the probability that the outcome belongs

to some subset A � Ω. Probability is non-negative, i.e. P(A) � 0.



What is measure theory? (Continued)

Probability is monotone, i.e. if A � B then P(A) � P(B). The
probability of an outcome in the empty set is 0, i.e. P(?) = 0.

Probability is additive, i.e. P(A [ B) + P(A \ B) = P(A) + P(B).
In particular, if A \ B = ? then P(A [ B) = P(A) + P(B).
Area The area of a subset of the plane is non-negative, i.e.

�(A) � 0. Area is monotone, i.e. if A � B then �(A) � �(B).
The area of the empty set is 0, i.e. �(?) = 0. Area is additive,

i.e. �(A [ B) + �(A \ B) = �(A) + �(B). In particular, if

A \ B = ? then �(A [ B) = �(A) + �(B).
Volume, of course is similar.

There are di�erences, of course. Probabilities are �nite, but

cardinalities, areas and volumes can be in�nite, for example. The

empty set is the only set with cardinality 0, but it's not the only

set with area 0 or volume 0. But there's enough similarity to try

to build a general theory.



Why is measure theory hard?

Let's try to build an axiomatic theory of volume. It seems

reasonable to suppose that

I Every set in three dimensional space has a non-negative, but

possibly in�nite, volume.

I Volume is monotone.

I The volume of the empty set is 0.

I Volume is (�nitely) additive.

I Congruent sets have the same volume.

I Balls of radius r have volume 4
3
�r3.

We might expect to need more axioms, but this seems like a good

start. In fact, we've already assumed too much. These axioms

are logically inconsistent!



Banach-Tarski

Theorem (Banach-Tarski): There are sets E1, E2, E3, E4, E5

and F1, F2, F3, F4, F5 such that

I Ei is congruent to Fi for each i ,

I Ei \ Ej = ? and Fi \ Fj = ? when i 6= j ,

I E1 [ E2 [ E3 [ E4 [ E5 is a ball of radius 1.

I F1 [ F2 [ F3 [ F4 [ F5 is the union of two balls of radius 1,

which do not intersect.

If the axioms above are satis�ed then Ei and Fi have the same

volume but also the sum of the volumes of the Fi is twice the the

sum of the volumes of the Ei . Note that these sums are �nite

and positive, so we have a contradiction.



How to escape the contradiction?

There are two lessons to be drawn from Banach-Tarski:

I We need to drop at least one of our axioms.

I No everything which is obvious is true.

The axiom we drop is the �rst one, that every subset of three

dimensional space has a non-negative, but possibly in�nite,

volume. We don't drop non-negativity, we just don't try to assign

a volume to every subset. Some sets are just too ugly to assign a

volume to.

There are other options. One would be to drop the Axiom of

Choice. That's not a very popular option.

The only way to deal with the second problem is to be very

careful. Don't trust your intuition!



Integration

In fact this module isn't primarily about measure theory at all

though. It's mostly about integration, but you need measure

theory for a proper discussion of integration.

You may have seen integrals introduced informally as the area

under the graph. That's not actually how we'll end up de�ning

them, but it will be a consequence of the de�nition. Area is an

example of a measure, speci�cally of Lebesgue measure.

One advantage of doing things in a more general context is that

you can avoid repeating arguments. For example, the same

theorems (Fubini-Tonelli) will govern exchanging the order of two

two sums, exchanging a sum and an integral, or exchanging two

integrals. There's also a corresponding statement for probability

theory, though we don't have the language to express it.



Fubini-Tonelli Counterexample 1

Theorems have hypotheses. We can't always exchange the order

of sums or integrals. Let

�i ;j =


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0 otherwise:
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Fubini-Tonelli Counterexample 2
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Riemann-Jordan vs Lebesgue Integration

Ideally you would like a theory of integration in Rn

I in which the hypotheses are weak enough to cover all the

important examples,

I but not so weak as to include the counterexamples, so the

theorems are actually true,

I and the de�nitions and proofs are fairly straightforward.

There is no known theory which satis�es all of these

requirements. Riemann integration, which you learned in �rst

year, and its higher dimensional analogue due to Jordan, satisfy

the second and (sort of) the third, but not the �rst. Lebesgue

integration, which you'll learn this semester, satis�es the second

and (sort of) the �rst, but not the third.


