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Equivalence of norms on finite dimensional spaces (1/4)

Suppose V is finite dimensional and p is a norm on V.

p(w) < p(w —z) + p(z)

and
p(z) < p(z — w) + p(w)
—p(z —w) < p(w) — p(z) < p(w —z)
lp(w) — p(2)| < p(w — 2).
Let uq, ..., u, be a basis for V. Define f: R" — V by

f(x) =) xu,  g(x)=p(f(x)).
j=1



Equivalence of norms on finite dimensional spaces (2/n)

lg9(x) = g(¥)| = [p(F(x)) — p(F(¥))| < p(f(x) — f(y))
=pf(x—y))=p (Z(Xj - yj)uj)

Jj=1

n
< DI —yilp(w)

j=1
n n
2
< Do =yl Do p(w)
j=1 j=1
= Klx -yl
where K = Zlep(ujf. The norm in ||x —y|| is the usual

Euclidean norm on R”. So g is Lipschitz, hence continuous.



Equivalence of norms on finite dimensional spaces (3/4)

Let S={xeR": |x|]| =1}. If x € S then x # 0 and hence

f(x) = 371 xu; is a non-trivial linear combination of basis
vectors of V. So f(x) # 0 and therefore g(x) = p(f(x) > 0.
Similarly if g is a norm on V' and h(x) = q(f(x)) then h is
continuous and is positive on S. g/p is therefore a continuous
positive function on S.

S is closed and bounded, hence compact, so h/g has a minimum
and maximum on S, both of which must both be positive. There
are therefore ¢, C > 0 such that

h(x) <c

c= g(x)

forallx € S. If y # 0 then

=y
lyll

is an element of S.



Equivalence of norms on finite dimensional spaces (4/4)

h(x)
—g(x) ~
and
a(f(y)) _ a(f(llyllx)) _ q(llylIif(x))
p(f(y)) — p(f(llylx)) — p(llylIf(x))
_ llylla(fF(x)) _ hix)
Ilyllp(f(x)) — g(x)
SO

cp(f(y)) < a(f(y)) < Cp(f(y)).
This was proved for y # 0 but clearly also holds for y = 0.
up, ..., u, is a basis for V so if ve V thenv =737, yu; for
some yi, ..., ¥p. In other words, v = f(y) for some y. Therefore

cp(v) < q(v) < Cp(v).

So p and g are equivalent.



The spaces ¢°(N)

Suppose p € [1,400). Let £°(N) be the set of functions
a: N — R, i.e. sequences in R, such that

oo
> layl?
j=0

is convergent.

Then
1/p

o
lllp = | > leyl?
Jj=0

is a norm on £P(N). The first two properties of norms are clear,
but the third is not. It is called Minkowski's inequality and a proof
will be given in the notes. It's also complete, though this is even
less clear, and so £P(N) is a Banach space.



Inclusions

Suppose 1 < p < g < +oo and a € £P(N). If a # 0 then set
Bi = aj/llallp. Then

Z 1Bj1° = Z lajlP/lledlp = llellp/lleell, = 1.
Jj=0
Each summand is non-negative so |B;|? < 1. It follows that
16119 = (16;1P)""* < |61
Multiplying by [|a||g,
oy |7 < [Pl

By the comparison test » 2, |;|? is convergent and
lallg < llallpllalls™ This also holds if o = 0. In other words,

P(N) CL9N), L lellg < llal,.



Strict inclusions

Define v: N — R by y; = 277/7 if 27 < j < 271, Then

0 0 0
Syt = S 0mpnalr = § g ey,
j=0 n=0 n=0

If g > r then this geometric series converges. If g < r then it
doesn't. So 7y € £9(N) exactly for ¢ > r If p < g then we
therefore have a strict inclusion

2°(N) C £9(N)

The inclusion function i: £/(N) — £9(N) is a continuous injection
whose image is a proper (linear) subspace. It's continuous
because ||allg < ||al/p, so K =1 is a bound.



Density (1/2)
Suppose a € £9(N). Define alfl € £9(N) by

a[k]— o7 if j < k,
S 1o ifj > k.

o ifj >k,
Oéj—oc[-k]:{aJ "=

J 0 ifj<k
So

o0
oo = ¥l =3 ey,
=k

This tends to zero as k tends to infinity, because > |a;|7 is
convergent, so

lim ||a — a[k]||g =0

k—o0

from which it follows that ||a — al¥l||, — 0 and al¥l — «.



Density (2/2)

Let F be the subset of £9(N) consisting of sequences with only
finitely many non-zero elements. alkl € F for all k and al¥l — «
so a € F. a € £9(N) was arbitrary, so F = £9(N). In other
words, F is dense in £9(N) for all ¢ > 1.
If 1 < p < qthen

F C¢°(N) C £9(N)

so £P(N) is also a dense proper (linear) subspace of £9(N). If your
intuition is based on finite dimensional normed spaces then it can
be hard to imagine a dense proper subspace!



Miscellaneous weird properties of £°(N)

» Closed balls in £° are not compact for any p.
> If i: £°/(N) — £9(N) for 1 < p < q is the inclusion i(a) =
then i.(B) is however compact in £9(N) for every closed ball

B in £°(N).
» || |lpand || |4 are inequivalent norms on £°(N) if
1 < p < q. Infact all the (uncountably many) norms || ||,

for p < r < @ are inequivalent.
» The inclusion i: £°(N) — £9(N) is an injection for 1 < p < q,
but has no bounded left inverse.



