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Cauchy �lters and uniform continuity

If X and Y are metric spaces, f : X ! Y is uniformly

continuous and F is a Cauchy �lter on X then f ��(F) is
a Cauchy �lter on Y .

Proof: Suppose � > 0. f is uniformly continuous so there is a

� > 0 such that

B(x ; �) � f �(B(f (x); �))

for all x 2 X . F is Cauchy so B(x ; �) 2 F for some x 2 X .

Therefore

f �(B(f (x); �)) 2 F

In other words,

B(f (x); �) 2 f ��(F)

So f ��(F) is Cauchy.



Closed subsets of complete spaces

Suppose X is a complete metric space and A is a closed

subset of X . Then A is a complete metric space.

Sketch of proof: i : A! X , de�ned by i(x) = x , is uniformly

continuous. If F is a Cauchy �lter on A then i��(F) is a Cauchy

�lter on X . X is complete so there is a z 2 X such that

NX (z) � i��(F).
If z =2 A then X n A 2 NX (z). Then X n A 2 i��(F) and
? = i�(X n A) 2 F . This is impossible so z 2 A.

F converges to z , i.e for all V 2 NA(z) we have V 2 F . See the

notes for the proof.

Every Cauchy �lter in A converges, so A is complete.



The Banach Fixed Point Theorem

Suppose that X is a non-empty complete metric space

and that there is a c < 1 such that ' : X ! X satis�es

d('(x); '(y)) � cd(x ; y)

for all x ; y 2 X. Then there is a unique z 2 X such that

'(z) = z.

A function ' satisfying the condition above is called a contraction

mapping and the Banach Fixed Point Theorem is sometimes

called the Contraction Mapping Principle. A point z such that

'(z) = z is called a �xed point of '.

For any � > 0 let � = � and observe that if d(x ; y) < � then

d('(x); '(y)) � c� < � so ' is uniformly continuous and hence

continuous.



Proof (1/3)
If '(w) = w and '(z) = z then

d(w ; z) = d('(w); '(z)) � cd(w ; z)

so

(1� c)d(w ; z) � 0

and d(w ; z) � 0. d is a metric so d(w ; z) � 0 so d(w ; z) = 0

and w = z . This shows uniqueness, i.e. that there is at most one

�xed point.

To show existence, pick a 2 X and de�ne

�0 = a; �j+1 = '(�j):

By induction on n, if m � n then

d(�m; �n) �
cm � cn

1� c
d(�0; �1):



Proof (2/3)

d(�m; �n) �
cm � cn

1� c
d(�0; �1)

for m � n and

d(�m; �n) �
cn � cm

1� c
d(�0; �1)

for n � m so

d(�m; �n) �
cmin(m;n) � cmax(m;n)

1� c
d(�0; �1) <

cmin(m;n)

1� c
d(�0; �1)

for all m; n. For any � > 0 there is a k such that d(�m; �n) < �

for all m; n � k . In other words, � is a Cauchy sequence.



Proof (3/3)

� is a Cauchy sequence in X and X is complete so � converges.

Let z be its limit. �j+1 = '(�j) so

lim
j!1

�j+1 = lim
j!1

'(�j):

' is continuous so

lim
j!1

'(�j) = '

(
lim
j!1

�j

)
= '(z):

lim
j!1

�j+1 = lim
j!1

�j = z :

So '(z) = z .



Spaces of bounded functions
If X is a non-empty set and (Y ; dY ) is a metric space then we say

that f : X ! Y is bounded if f�(X ) is a bounded subset of Y . If f

and g are bounded then there are y ; z 2 Y and r ; s > 0 such that

f�(X ) � BY (y ; r) and g�(X ) � BY (z ; s). If x 2 X then

dY (f (x); g(x)) � dY (f (x); y)+dY (y ; z)+dY (z ; g(x)) < r+dY (y ; z)+s:

The set of dY (f (x); g(x)) for x 2 X is thus bounded from above,

so supx2X dY (f (x); g(x)) exists.

d(f ; g) = sup
x2X

dY (f (x); g(x))

is a metric on the space of bounded functions from X to Y . To

prove the triangle inequality, for each x 2 X

dY (f (x); h(x)) � dY (f (x); g(x))+dY (g(x); h(x)) � d(f ; g)+d(g; h)

so d(f ; h) = supx2X dY (f (x); h(x)) � d(f ; g) + d(g; h).



Spaces of bounded continuous functions

If (X ; T ) is a topological space then the set of bounded

continuous functions from X to Y is a closed subset of the space

of bounded functions from X to Y .

Proof: Suppose f is bounded but not continuous, i.e that there is

an x 2 X and an � > 0 such that for all U 2 O(x) we have

U * f �(BY (f (x); �)). In other words, there is a y 2 U such that

f (y) =2 BY (f (x); �), i.e. dY (f (x); f (y)) � �. If g 2 B(f ; �=3) then
dY (f (x); g(x)) < �=3 and dY (f (y); g(y)) < �=3. So

dY (g(x); g(y)) � �=3. In other words, y 2 U but

g(y) =2 BY (g(x); �=3). So U * g�(BY (g(x); �=3)). Since this

holds for all U 2 O(x) we see that g is not continuous. About

every discontinuous function there is a ball consisting of

discontinuous functions, so the set of discontinuous functions is

open. The set of continuous functions is therefore closed.


