MAU22200 Lecture 29

John Stalker

Trinity College Dublin

22 November 2021

Completion

Suppose (X, d_X) is a metric space. Let X be the set of minimal Cauchy filters on X. Define $d_X : X \times X \to \mathbf{R}$ as follows. If $\mathcal{F}, \mathcal{G} \in \mathbf{X}$ then let \mathcal{H} be the product of \mathcal{F} and \mathcal{G} . Then $\mathcal{I} = d_X^{**}(\mathcal{H})$ is a Cauchy filter on \mathbf{R} . \mathbf{R} is a complete metric space so there is a unique $z \in \mathbf{R}$ such that \mathcal{I} converges to z. We define $d_X(\mathcal{F}, \mathcal{G}) = z$. Then d_X is a metric on \mathbf{X} . The function $i: X \to \mathbf{X}$ defined by $i(x) = \mathcal{N}(x)$ satisfies

$$d_X(i(x), i(y)) = d_X(x, y)$$

for all x, $y \in X$. Also, (\mathbf{X}, d_X) is complete.

We still need to show:

• If
$$\mathcal{F} \neq \mathcal{G}$$
 then $d_X(\mathcal{F}, \mathcal{G}) > 0$.

•
$$d_X(i(x), i(y)) = d_X(x, y).$$

$\mathcal{F} \neq \mathcal{G} \Rightarrow d_{\mathbf{X}}(\mathcal{F}, \mathcal{G}) > 0$

By a lemma from last lecture, if \mathcal{F} , \mathcal{G} are minimal Cauchy filters and $\mathcal{F} \neq \mathcal{G}$ then there are $x, y \in X$ and r > 0 such that $B_X(x,r) \in \mathcal{F}$, $B_X(y,r) \in \mathcal{G}$ and $d_X(x,y) \ge 3r$. If $s \in B(x,r)$ and $t \in B(y,r)$ then

 $3r \leq d_X(x, y) \leq d_X(x, s) + d_X(s, t) + d_X(t, y) < r + d_X(s, t) + r$ so $d_X(s, t) > r$. From our characterisation of \mathcal{I} from last time we get

$$(r, +\infty) \in \mathcal{I}$$

and

$$d_X(\mathcal{F},\mathcal{G})\in [r,+\infty).$$

i.e. $d_X(\mathcal{F}, \mathcal{G}) \geq r$. This holds for some r > 0 so

 $d_X(\mathcal{F},\mathcal{G})>0.$

$$d_{\mathbf{X}}(i(x),i(y))=d_{X}(x,y)$$

 $i: X \to \mathbf{X}$ was defined by $i(x) = \mathcal{N}(x)$. This makes sense because $\mathcal{N}(x)$ is a minimal Cauchy filter on X. $B(x, r) \in i(x)$ and $B(y, r) \in i(y)$ so

$$|d_X(i(x), i(y)) - d_X(x, y)| < 2r$$

for all r > 0. Therefore

$$d_X(i(x), i(y)) = d_X(x, y).$$

$(\mathbf{X}, d_{\mathbf{X}})$ is complete (1/4)

We need to show that if $\mathfrak F$ is a Cauchy filter in ${\bm X}$ then it is a convergent filter.

The first step is to find something \mathfrak{F} might plausibly converge to and the second step is to show that \mathfrak{F} does in fact converge to it. \mathfrak{F} is Cauchy so for each r > 0 there's a \mathcal{G} such that

 $B_X(\mathcal{G}, r/4) \in \mathfrak{F}.$

This \mathcal{G} is also Cauchy so there's an $x \in X$ such that

 $B(x, r/4) \in \mathcal{G}.$

The factor of 1/4 is there for later convenience. The \mathcal{G} and x depend on r so I'll write them as $\mathcal{G}(r)$ and x(r). I claim that $x: (0, +\infty) \to X$ is a Cauchy net, if I take the order relation \geq on $(0, +\infty)$. (X, d_X) is complete (2/4) Suppose $q \le r$. $B_X(\mathcal{G}(q), q/4) \in \mathfrak{F}$. $B_X(\mathcal{G}(r), r/4) \in \mathfrak{F}$ so $d_X(\mathcal{G}(q), \mathcal{G}(r)) < q/4 + r/4 < r/2$.

$$B_X(x(q), q/4) \in \mathcal{G}(q), \qquad B_X(x(r), r/4) \in \mathcal{G}(r)$$

SO

$$d_X(x(q), x(r)) \le d_X(x(q), s) + d_X(s, t) + d_X(t, x(r)) < q/4 + d_X(s, t) + r/4 \le d_X(s, t) + r/2.$$

$$d_X(s,t) \in (d_X(x(q),x(r)) - r/2,+\infty).$$

 $d_X(\mathcal{G}(q), \mathcal{G}(r)) \in (d_X(x(q), x(r)) - r/2, +\infty).$

 $(\mathbf{X}, d_{\mathbf{X}})$ is complete (3/4)

$$d_X(\mathcal{G}(q),\mathcal{G}(r)) > d_X(x(q),x(r)) - r/2.$$

 $d_X(x(q), x(r)) < d_X(\mathcal{G}(q), \mathcal{G}(r)) + r/2.$

 $d_X(\mathcal{G}(q), \mathcal{G}(r)) < r/2.$

 $d_X(x(q), x(r)) < r.$

If $q, r \ge r$ then $d_X(x(q), x(r)) < r$. If $q \ge r$ then $d_X(x(q), x(r)) < r$ i.e $x(q) \in B_X(x(r), r)$ for all $q \le r$. So $B_X(x(r), r)$ is contained in the tail filter of x. For each r > 0there's a ball of radius r in the tail filter, so the tail filter is a Cauchy filter. There is a minimal Cauchy filter which contains the tail filter. Call it \mathcal{F} . I claim that \mathfrak{F} converges to \mathcal{F} .

$(\mathbf{X}, d_{\mathbf{X}})$ is complete (4/4)

 \mathcal{F} is Cauchy so there is a $y \in X$ with $B_X(y, r) \in \mathcal{F}$. $B_X(x(r), r)$ belongs to the tail filter and \mathcal{F} is contained in the tail filter so $B_X(x(r), 3r) \in \mathcal{F}$.

 $B_X(x(r), r/4) \subseteq B_X(x(r), 3r)$

and $B_X(x(r), r/4) \in \mathcal{G}(r)$ so

 $B_X(x(r), 3r) \in \mathcal{G}(r).$

This and $B_X(x(r), 3r) \in \mathcal{F}$ imply

 $d_{\mathsf{X}}(\mathcal{F},\mathcal{G}(r)) < 9r$

and

$$B(\mathcal{G}(r), r) \subseteq B_X(\mathcal{F}, 10r).$$

 $B_X(\mathcal{G}(r), r) \in \mathfrak{F}$ so $B_X(\mathcal{F}, 10r) \in \mathfrak{F}$. This holds for all r > 0 so \mathfrak{F} converges \mathcal{F} . Thus (\mathbf{X}, d_X) is complete, as promised.

Interpretation

The space $(\mathbf{X}, d_{\mathcal{X}})$ is called the *completion* of (X, d_X) . $(i_*(X), d_X)$ is a metric space and *i* is a bijection from $X \to i_*(X)$ which preserves the metric. One can use it to regard X as a subset of \mathbf{X} .

If X is not complete then Cauchy filters may not converge, but there's a larger metric space where they do.

We saw some examples already, e.g. the filters associated to the sequences $1/2^n$ in $(0, +\infty)$ or $\sum_{j=0}^n 1/j!$ in **Q**. The completion of $(0, +\infty)$ is $[0, +\infty)$ while the completion of **Q** is **R**.