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Product �lters

Last time we saw that if F and G are �lters on X such that

U \ V 6= ? then there is a smallest �lter H on X such that

F � H and G � H. Explicitly, H is the set of W 2 }(X ) such
that there are U;V 2 F such that U \ V �W .

Similarly, if F is a �lter on X and G is a �lter on Y then there is a

natural �lter H on X � Y . Explicitly, H is the set of

W 2 }(X � Y ) such that there are U 2 F and V 2 G such that

U � V �W . One way to get this is to apply the previous

construction to the �lters F̃ and G̃ on X � Y where Ũ 2 F̃ i�

there's a U 2 F such that U � Y � Ũ and Ṽ 2 G̃ i� there's a

V 2 G such that X � V � Ṽ . The condition Ũ \ Ṽ 6= ? is

automatically satis�ed. In the notes I just construct H directly.

H is called the product of F and G. As an example, if w 2 Rm

and z 2 Rn then the product of N (w) and N (z) is the �lter

N ((w; z)) on Rm+n.



Round �lters, two more lemmas

A �lter F on a metric space is called round if for all A 2 F there

is an r > 0 such that if B(x ; r) 2 F then B(x ; r) � A.

Round Cauchy �lters and minimal Cauchy �lters are the same

thing. See the notes for a proof.

If F is a �lter on a metric space X and B(x ; p);B(y ; q) 2 F then

d(x ; y) < p + q.

Proof: There is a z 2 B(x ; p) \ B(y ; q) so
d(x ; y) � d(x ; z) + d(z ; y) < p + q.

If F and G are minimal Cauchy �lters on X such that F 6= G then

there are x ; y 2 X and r > 0 such that B(x ; r) 2 F , B(y ; r) 2 G,
and d(x ; y) � 3r .

See the notes for a proof. It uses the fact that minimal Cauchy

�lters are round.



Completion

The main point of Section 4.6 is the last theorem:

Suppose (X ; dX ) is a metric space. Let X be the set of

minimal Cauchy �lters on X . De�ne dX : X � X ! R as

follows. If F ;G 2 X then let H be the product of F and

G. Then I = d��
X
(H) is a Cauchy �lter on R. R is a

complete metric space so there is a unique z 2 R such

that I converges to z. We de�ne dX(F ;G) = z. Then

dX is a metric on X. The function i : X ! X de�ned by

i(x) = N (x) satis�es

dX(i(x); i(y)) = dX (x ; y)

for all x ; y 2 X. Also, (X; dX) is complete.



Unwrapping de�nitions (1/2)

How are you to understand statements like \I = d��
X
(H) where H

is the product of F and G."?
We understand sets by identifying their members. For a de�nition

like Tm = fn 2 N : m � ng that's easy; n 2 Tm if and only if

n 2 N and m � n. For a de�nition like the one above you have to

do more work. Do it one step at a time, not all at once!

I W 2 I if and only if d�
X
(W ) 2 H.

I d�
X
(W ) 2 H if and only if there are U 2 F and V 2 G such

that that U � V � d�
X
(W ).

I U � V � d�
X
(W ) if and only if for all (s; t) 2 U � V implies

(s; t) 2 d�
X
(W ).

I (s; t) 2 d�
X
(W ) if and only if dX (s; t) 2W for all s 2 U and

t 2 V .

So W 2 I if and only if there are U 2 F and V 2 G such that if

s 2 U and t 2 V then dX (s; t) 2W .



Unwrapping de�nitions (2/2)

W 2 I if and only if there are U 2 F and V 2 G such that if

s 2 U and t 2 V then dX (s; t) 2W .

Is this clear? Probably not, but at least it's something you can

imagine checking. For more insight, consider special cases.

Suppose F and G are Cauchy, so we know that there are x ; y 2 X

such that BX (x ; r) 2 F and BX (y ; r) 2 G. Let U = BX (x ; r) and
V = BX (y ; r). If s 2 U and t 2 V then

dX (x ; s) < r ; dX (y ; s) < r :

So

dX (s; t) � dX (s; x) + dX (x ; y) + dX (y ; t) < r + dX (x ; y) + r

dX (x ; y) � dX (x ; s) + dX (s; t) + dX (t; y) < r + dX (s; t) + r

For s 2 U, t 2 V , dX (s; t) 2 (dX (x ; y)� 2r ; dX (x ; y) + 2r). So
(dX (x ; y)� 2r ; dX (x ; y) + 2r) 2 I.



Consequences (1/3)

If F and G are Cauchy then there are x ; y 2 X such that

BX (x ; r) 2 F and BX (y ; r) 2 G. Then, as we just saw,

(dX (x ; y)� 2r ; dX (x ; y) + 2r) 2 I.
(dX (x ; y)� 2r ; dX (x ; y) + 2r) = BR(dX (x ; y); 2r).

BR(dX (x ; y); 2r) 2 I:

So I is Cauchy, as promised in the statement of the theorem. I
is a �lter on R and R is complete so I converges, also as

promised. dX(F ;G) was de�ned as what it converges to.

BX(dX(F ;G); r) 2 N (dX(F ;G)) � I:

By one of the lemmas,

dR(dX(F ;G); dX (x ; y)) < 3r ; i.e. jdX(F ;G)� dX (x ; y)j < 3r :



Consequences (2/3)
If BX (x ; r) 2 F and BX (y ; r) 2 G then

jdX(F ;G)� dX (x ; y)j < 3r :

Most of what we want to know about (X; dX) follows from this

and the properties of (X ; dX ).
For example, if F = G we can take x = y so dX (x ; y) = 0 and

jdX(F ;G)j < 3r . This holds for all r > 0 so dX(F ;G) = 0.

F = G ) dX(F ;G) = 0:

Also dX (x ; y) = dX (y ; x) so

jdX(F ;G)� dX(G;F)j < 6r :

This holds for all r > 0 so

dX(F ;G) = dX(G;F):



Consequences (3/3)

Suppose BX (x ; r) 2 F , BX (y ; r) 2 G and BX (z ; r) 2 J .

dX (x ; z) � dX (x ; y) + dX (x ; z):

jdX(F ;G)� dX (x ; y)j < 3r jdX(G;J )� dX (x ; y)j < 3r

jdX(F ;J )� dX (x ; y)j < 3r

dX(F ;J ) � dX(F ;G) + dX(G;J ) + 9r :

This holds for all r > 0 so

dX(F ;J ) � dX(F ;G) + dX(G;J ):



What's left?

Which parts of the theorem remain to be proved?

I If F 6= G then dX(F ;G) > 0. Then we'll know that dX is a

metric on X.

I dX(i(x); i(y)) = dX (x ; y).

I (X; dX) is a complete metric space.


