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Product filters

Last time we saw that if 7 and G are filters on X such that
UNV # @ then there is a smallest filter H on X such that

F CH and G C H. Explicitly, H is the set of W € p(X) such
that there are U,V € Fsuchthat UNnV C W,

Similarly, if F is a filter on X and G is a filter on Y then there is a
natural filter H on X x Y. Explicitly, H is the set of

W € p(X x Y) such that there are U € F and V € G such that
UxV CW. One way to get this is to apply the prewous
construction to the filters F and G on X x Y where U € F iff
there's a U € F such that U x Y C U and V € G iff there's a
V € G such that X x V C V. The condition UNV # @ is
automatically satisfied. In the notes | just construct H directly.
H is called the product of F and G. As an example, if w € R™
and z € R" then the product of A'(w) and N (z) is the filter
N((w,z)) on R™H",



Round filters, two more lemmas

A filter F on a metric space is called round if for all A € F there
is an r > 0 such that if B(x,r) € F then B(x,r) C A.

Round Cauchy filters and minimal Cauchy filters are the same
thing. See the notes for a proof.

If F is a filter on a metric space X and B(x, p), B(y, q) € F then
dix.y)<p+q.

Proof: Thereisa z € B(x,p) N B(y, q) so

d(x,y) <d(x,z)+d(z,y) <p+q.

If 7 and G are minimal Cauchy filters on X such that F # G then
there are x,y € X and r > 0 such that B(x,r) € F, B(y.r) € G,
and d(x,y) > 3r.

See the notes for a proof. It uses the fact that minimal Cauchy
filters are round.



Completion

The main point of Section 4.6 is the last theorem:

Suppose (X, dx) is a metric space. Let X be the set of
minimal Cauchy filters on X. Define dx: X x X = R as
follows. If F,G € X then let H be the product of F and
G. Then I = dy*(#) is a Cauchy filter on R. R is a
complete metric space so there is a unique z € R such
that Z converges to z. We define dx(F,G) = z. Then
dx is a metric on X. The function i: X — X defined by
i(x) = N(x) satisfies

dx(i(x),i(y)) = dx(x,y)

for all x,y € X. Also, (X, dx) is complete.



Unwrapping definitions (1/2)

How are you to understand statements like “Z = dy*(#) where H
is the product of F and G."7

We understand sets by identifying their members. For a definition
like T ={n € N: m< n} that's easy; n € T, if and only if

n € N and m < n. For a definition like the one above you have to
do more work. Do it one step at a time, not all at once!

> W eI if and only if di(W) € H.

» dyx (W) € H if and only if there are U € F and V € G such
that that U x V C dx(W).

> Ux V Cdy(W)if and only if for all (s, t) € U x V implies
(s,t) € dy(W).

> (s, t) € dx (W) if and only if dx (s, t) € W for all s € U and
teV.

So W € Z if and only if there are U € F and V € G such that if
s€e Uand t eV then dx(s, t) e W.



Unwrapping definitions (2/2)

W e Z if and only if there are U € F and V € G such that if

s€ Uandt eV then dx(s, t) € W.

Is this clear? Probably not, but at least it's something you can
imagine checking. For more insight, consider special cases.
Suppose F and G are Cauchy, so we know that there are x,y € X
such that Bx(x,r) € F and Bx(y.r) € G. Let U = Bx(x,r) and
V =Bx(y,r). If s€ Uand t €V then

dx(x,s) <r, dx(y,s) <r.
So

dx(s,t) < dx(s x)+dx(x,y)+dx(y,.t) <r+dx(x,y)+r
dx(X,y) < dx(X, S) + dx(S, t) + dx(t,y) <r+ dX(S, t) +r

Forse U, t € V, dx(s, t) € (dx(x,y) —2r, dx(x,y) 4+ 2r). So
(dx(x,y)—2r,dx(x,y)+2r) e L.



Consequences (1/3)

If 7 and G are Cauchy then there are x,y € X such that
Bx(x,r) € F and Bx(y.r) € G. Then, as we just saw,
(dx(x,y) —2r, dx(x,y)+2r) € T.

(dx(x,y) —2r,dx(x,y) + 2r) = Br(dx(x.,y). 2r).

Br(dx(x,y),2r) € L.

So 7 is Cauchy, as promised in the statement of the theorem. 7
is a filter on R and R is complete so Z converges, also as
promised. dx(F,G) was defined as what it converges to.

Bx(dx(F,G).r) € N(dx(F.G)) CT.
By one of the lemmas,

dr(dx(F,G), dx(x,y)) <3r, ie. |dx(F,G)—dx(x,y)| <3r.



Consequences (2/3)
If Bx(x,r) € F and Bx(y.r) € G then

|dx(F.,G) — dx(x.y)| < 3r.

Most of what we want to know about (X, dx) follows from this
and the properties of (X, dx).

For example, if 7 = G we can take x =y so dx(x,y) =0 and
|dx(F,G)| < 3r. This holds for all r > 0 so dx(F.G) =

F=G = dx(]:,g):O.

Also dx(x,y) = dx(y,x) so
|dx(F,G) — dx(G, F)| < 6r.
This holds for all r > 0 so

dx(F.G) = dx(G. F).



Consequences (3/3)

Suppose Bx(x,r) € F, Bx(y,r) € G and Bx(z,r) € J.

dx(x,z) < dx(x,y) + dx(x, z).

ldx(F.G) — dx(x.¥)l <3r  [dx(G.T) — dx(x,y)| < 3r
|dx(F, T) — dx(x,y)| < 3r

dx(F, J) < dx(F.G)+ dx(G.J)+ 9r.
This holds for all r > 0 so

dx(F,J) < dx(F,G)+ dx(G, T).



What's left?

Which parts of the theorem remain to be proved?
> If F # G then dx(F,G) > 0. Then we'll know that dx is a
metric on X.
> dx(i(x).i(y)) = dx(x.y).
» (X, dx) is a complete metric space.



