MAU22200 Lecture 27

John Stalker

Trinity College Dublin

17 November 2021

Inclusions of filters

Suppose \mathcal{F}, \mathcal{G} are filters on X and $\mathcal{F} \subseteq \mathcal{G}$.

- ▶ If X is a topological space and \mathcal{F} is convergent then so is \mathcal{G} . Proof: If $\mathcal{N}(z) \subseteq \mathcal{F}$ and $\mathcal{F} \subseteq \mathcal{G}$ then $\mathcal{N}(z) \subseteq \mathcal{G}$.
- If X is a metric space and F is Cauchy then so is G. Proof: If for all r > 0 there is an x > 0 such that B(x, r) ∈ F and F ⊆ G then for all r > 0 there is an x > 0 such that B(x, r) ∈ G.
- If X is a metric space and F is Cauchy and G is convergent then F is convergent. Proof: For each r > 0 there is an x ∈ X such that B(x, r) ∈ F. F ⊆ G so B(x, r) ∈ G. For some z ∈ X we have N(z) ⊆ G so B(z, r) ∈ G. By an earlier lemma B(z, 3r) ∈ F. This holds for all r > 0 so F converges to z by another earlier lemma.

Compact = complete + totally bounded

If X is totally bounded and \mathcal{F} is a filter then there's a Cauchy filter \mathcal{G} with $\mathcal{F} \subseteq \mathcal{G}$.

Proof: Total boundedness means for each r > 0 there are finitely many balls of radius r > 0 which cover X. We saw earlier that if U_1, \ldots, U_m is a finite cover of X then we can "add" one of the U_j to any filter. More precisely, if \mathcal{A} is a filter then there's a filter \mathcal{B} which contains \mathcal{A} and U_j . Start with \mathcal{F} and add balls of radius 1/2, 1/4, 1/8, etc. Increasing unions of filters are filters so there's one big filter containing \mathcal{F} and all these balls. It contains balls of all positive radii because if r > 0 there's an n with $1/2^n < r$ and filters are upward closed.

If X is also complete then the filter \mathcal{G} is convergent. We saw earlier that X is such that every filter is contained in a convergent filter then X is compact. So totally bounded complete metric spaces are compact. Conversely, compact metric spaces are complete and totally bounded.

Some easy lemmas

- If F is a filter on a metric space X then there is at most one z ∈ X such that F converges to z. Proof: We showed ages ago that metric spaces are Hausdorff and that if X is Hausdorff and F is a filter on X then there is at most one z ∈ X such that N(z) ⊆ F.
- The intersection of any non-empty set of filter is a filter. Proof: Check each of the four properties. They're all easy.
- Suppose X is a topological space $z \in X$, and $A \subseteq X$.
 - ▶ If \mathcal{G} is a filter on X, $A \in \mathcal{G}$ and \mathcal{G} converges to z then $z \in \overline{A}$.
 - If z ∈ A then there is a filter G such that A ∈ G and G converges to z.

This is an analogue for filters of the fact that if f is a net with values in A and $z = \lim f$ then $z \in \overline{A}$ and, conversely, if $z \in \overline{A}$ then there is a net f with values in A such that $\lim f = z$. Only half of the corresponding statements for sequences is correct in general.

Minimal Cauchy filters (1/2)

A Cauchy filter is called minimal if no proper subset of it is a Cauchy filter. Equivalently, \mathcal{G} is minimal if $\mathcal{F} = \mathcal{G}$ for every Cauchy filter \mathcal{F} such that $\mathcal{F} \subseteq \mathcal{G}$. This is the same sense of the word minimal as for partially ordered sets.

Example: Every neighbourhood filter is a minimal Cauchy filter. Proof: Suppose \mathcal{F} is a Cauchy filter and $\mathcal{F} \subseteq \mathcal{N}(z)$. $\mathcal{N}(z)$ converges to z. By a lemma from the first slide, \mathcal{F} converges to z. In other words $\mathcal{N}(z) \subset \mathcal{F}$. So $\mathcal{F} = \mathcal{N}(z)$. $\mathcal{F} = \mathcal{N}(z)$ for every Cauchy filter \mathcal{F} such that $\mathcal{F} \subseteq \mathcal{N}(z)$, as required. Not every Cauchy filter is minimal. For example, the sets (0, b)for b > 0 are a prefilter on **R**. Its upward closure is a Cauchy filter, but not a minimal Cauchy filter. It's Cauchy because it contains B(r, r) = (0, 2r) for every r > 0. It contains $\mathcal{N}(0)$, because every neighbourhood of 0 contains a set of the form (0, b). But it's not equal to $\mathcal{N}(0)$ because $(0, b) \notin \mathcal{N}(0)$.

Minimal Cauchy filters (2/2)

Every Cauchy filter contains a unique minimal Cauchy filter. Suppose \mathcal{H} is a Cauchy filter. Let **S** be the set of Cauchy filters \mathcal{G} such that $\mathcal{G} \subseteq \mathcal{H}$. The minimal Cauchy filter should be $\mathcal{F} = \bigcap_{\mathcal{G} \in S} \mathcal{G}$. It's certainly a filter and contained in \mathcal{H} . If it's a Cauchy filter then it's certainly minimal. What's not obvious is that it's Cauchy.

 \mathcal{H} is Cauchy so there is an $x \in X$ with $B(x, r) \in \mathcal{H}$. If $\mathcal{G} \in \mathbf{S}$ then $\mathcal{G} \subseteq \mathcal{H}$ and \mathcal{G} is Cauchy. So there's a $y \in X$ such that $B(y, r) \in \mathcal{G}$. It follows that $B(x, 3r) \in \mathcal{G}$. Note that y depended on the choice of \mathcal{G} but x didn't. $B(x, 3r) \in \mathcal{G}$ for all $\mathcal{G} \in \mathbf{S}$ so $B(x, 3r) \in \mathcal{F}$. \mathcal{F} contains balls of every positive radius so it's Cauchy.

Joining filters

Suppose \mathcal{F}, \mathcal{G} and \mathcal{H} are filters on $X, \mathcal{F} \subseteq \mathcal{H}, \mathcal{G} \subseteq \mathcal{H}$. Then $U \cap V \neq \emptyset$ for all $U \in \mathcal{F}$ and $V \in \mathcal{G}$ because $U, V \in \mathcal{H}$ and \mathcal{H} is a filter. So $U \cap V \neq \emptyset$ for all $U \in \mathcal{F}$ and $V \in \mathcal{G}$ is a necessary condition for the existence of a filter \mathcal{H} such that $\mathcal{F} \subseteq \mathcal{H}$ and $\mathcal{G} \subseteq \mathcal{H}$. It's also a sufficient condition. If \mathcal{F} and \mathcal{G} are filters on X such that $U \cap V \neq \emptyset$ for all $U \in \mathcal{F}$ and $V \in \mathcal{G}$ then there is a filter \mathcal{H} such that $\mathcal{F} \subseteq \mathcal{H}$ and $\mathcal{G} \subseteq \mathcal{H}$. We've already seen the special case $\mathcal{G} = \{A, X\}$. In fact there's a smallest such filter. $W \in \mathcal{H}$ if and only if there are $U \in \mathcal{F}$ and $V \in \mathcal{G}$ such that $U \cap V \subseteq W$. For a proof that this works, see the notes. If X is a metric space and \mathcal{F} and \mathcal{G} are Cauchy then so is \mathcal{H} , by a lemma from the first slide

If \mathcal{F} and \mathcal{G} are minimal Cauchy filters then $\mathcal{F} = \mathcal{G}$, because there's a *unique* minimal filter contained in \mathcal{H} . An equivalent statement is that if \mathcal{F} and \mathcal{G} are distinct minimal Cauchy filters then there are $U \in \mathcal{F}$ and $V \in \mathcal{G}$ such that $U \cap V = \emptyset$.