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Inclusions of �lters

Suppose F ;G are �lters on X and F � G.

I If X is a topological space and F is convergent then so is G.
Proof: If N (z) � F and F � G then N (z) � G .

I If X is a metric space and F is Cauchy then so is G. Proof:
If for all r > 0 there is an x > 0 such that B(x ; r) 2 F and

F � G then for all r > 0 there is an x > 0 such that

B(x ; r) 2 G.

I If X is a metric space and F is Cauchy and G is convergent

then F is convergent. Proof: For each r > 0 there is an

x 2 X such that B(x ; r) 2 F . F � G so B(x ; r) 2 G. For
some z 2 X we have N (z) � G so B(z ; r) 2 G. By an earlier

lemma B(z ; 3r) 2 F . This holds for all r > 0 so F converges

to z by another earlier lemma.



Compact = complete + totally bounded

If X is totally bounded and F is a �lter then there's a Cauchy

�lter G with F � G.
Proof: Total boundedness means for each r > 0 there are �nitely

many balls of radius r > 0 which cover X . We saw earlier that if

U1; : : : ;Um is a �nite cover of X then we can \add" one of the

Uj to any �lter. More precisely, if A is a �lter then there's a �lter

B which contains A and Uj . Start with F and add balls of radius

1=2, 1=4, 1=8, etc. Increasing unions of �lters are �lters so

there's one big �lter containing F and all these balls. It contains

balls of all positive radii because if r > 0 there's an n with

1=2n < r and �lters are upward closed.

If X is also complete then the �lter G is convergent. We saw

earlier that X is such that every �lter is contained in a convergent

�lter then X is compact. So totally bounded complete metric

spaces are compact. Conversely, compact metric spaces are

complete and totally bounded.



Some easy lemmas

I If F is a �lter on a metric space X then there is at most one

z 2 X such that F converges to z . Proof: We showed ages

ago that metric spaces are Hausdor� and that if X is

Hausdor� and F is a �lter on X then there is at most one

z 2 X such that N (z) � F .

I The intersection of any non-empty set of �lter is a �lter.

Proof: Check each of the four properties. They're all easy.

I Suppose X is a topological space z 2 X , and A � X .

I If G is a �lter on X , A 2 G and G converges to z then z 2 A.
I If z 2 A then there is a �lter G such that A 2 G and G

converges to z .

This is an analogue for �lters of the fact that if f is a net

with values in A and z = lim f then z 2 A and, conversely, if

z 2 A then there is a net f with values in A such that

lim f = z . Only half of the corresponding statements for

sequences is correct in general.



Minimal Cauchy �lters (1/2)

A Cauchy �lter is called minimal if no proper subset of it is a

Cauchy �lter. Equivalently, G is minimal if F = G for every

Cauchy �lter F such that F � G. This is the same sense of the

word minimal as for partially ordered sets.

Example: Every neighbourhood �lter is a minimal Cauchy �lter.

Proof: Suppose F is a Cauchy �lter and F � N (z). N (z)
converges to z . By a lemma from the �rst slide, F converges

to z . In other words N (z) � F . So F = N (z). F = N (z) for
every Cauchy �lter F such that F � N (z), as required.
Not every Cauchy �lter is minimal. For example, the sets (0; b)
for b > 0 are a pre�lter on R. Its upward closure is a Cauchy

�lter, but not a minimal Cauchy �lter. It's Cauchy because it

contains B(r ; r) = (0; 2r) for every r > 0. It contains N (0),
because every neighbourhood of 0 contains a set of the form

(0; b). But it's not equal to N (0) because (0; b) =2 N (0).



Minimal Cauchy �lters (2/2)

Every Cauchy �lter contains a unique minimal Cauchy �lter.

Suppose H is a Cauchy �lter. Let S be the set of Cauchy �lters G
such that G � H. The minimal Cauchy �lter should be

F =
⋂
G2S G. It's certainly a �lter and contained in H. If it's a

Cauchy �lter then it's certainly minimal. What's not obvious is

that it's Cauchy.

H is Cauchy so there is an x 2 X with B(x ; r) 2 H. If G 2 S then

G � H and G is Cauchy. So there's a y 2 X such that

B(y ; r) 2 G. It follows that B(x ; 3r) 2 G. Note that y depended

on the choice of G but x didn't. B(x ; 3r) 2 G for all G 2 S so

B(x ; 3r) 2 F . F contains balls of every positive radius so it's

Cauchy.



Joining �lters

Suppose F , G and H are �lters on X , F � H, G � H. Then

U \ V 6= ? for all U 2 F and V 2 G because U;V 2 H and H is

a �lter. So U \ V 6= ? for all U 2 F and V 2 G is a necessary

condition for the existence of a �lter H such that F � H and

G � H. It's also a su�cient condition. If F and G are �lters on X

such that U \ V 6= ? for all U 2 F and V 2 G then there is a

�lter H such that F � H and G � H. We've already seen the

special case G = fA;Xg. In fact there's a smallest such �lter.

W 2 H if and only if there are U 2 F and V 2 G such that

U \ V �W . For a proof that this works, see the notes.

If X is a metric space and F and G are Cauchy then so is H, by a

lemma from the �rst slide.

If F and G are minimal Cauchy �lters then F = G, because
there's a unique minimal �lter contained in H. An equivalent

statement is that if F and G are distinct minimal Cauchy �lters

then there are U 2 F and V 2 G such that U \ V = ?.


