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A useful lemma

Suppose (X ; d) is a metric space, F and G are �lters on X ,

x ; y 2 X and r > 0. If B(x ; r) 2 F and B(y ; r) 2 F \ G then

B(x ; 3r) 2 G.
B(x ; r) 2 F and B(y ; r) 2 F so

B(x ; r) \ B(y ; r) 6= ?:

So there's a z 2 B(x ; r) \ B(y ; r). Suppose w 2 B(y ; r). Then

d(x ;w) � d(x ; z) + d(z ; y) + d(y ;w) < r + r + r

so w 2 B(x ; 3r). Since this holds for all w 2 B(y ; r) we have

B(y ; r) � B(x ; 3r):

But B(y ; r) 2 G and G is upward closed so B(x ; 3r) 2 G.



Cauchy �lters and nets

A �lter F on a metric space (X ; d) is called a Cauchy �lter if for

all r > 0 there is an x 2 X such that B(x ; r) 2 F .
A net is said to be a Cauchy net if its tail �lter is a Cauchy �lter.

A sequence which is a Cauchy net is called a Cauchy sequence.

Every convergent �lter is a Cauchy �lter, since B(z ; r) 2 N (z)
and hence B(z ; r) 2 F if N (z) � F . Also, every convergent net

is a Cauchy net and every convergent sequence is a Cauchy

sequence.

A net f : D ! X is Cauchy if and only if for every � > 0 there is

an a 2 D such that d(f (b); f (c)) < � for all b; c 2 D such that

a 4 b and a 4 c .

Let F be the tail �lter of f .

Suppose f is a Cauchy net, i.e. that F is a Cauchy �lter, and

� > 0. There is an x 2 X such that B(x ; �=2) 2 F .



Cauchy �lters and nets, continued

Recall from last time that W in an element of the tail �lter of f if

and only if there is an a 2 D such that f (b) 2W for all b 2 D

such that a 4 b. So there's an a 2 D such that f (b) 2 B(x ; �=2)
if a 4 b. Also, f (c) 2 B(x ; �=2) if a 4 c . If a 4 b and a 4 c then

d(b; c) � d(a; b) + d(a; c) <
�

2
+

�

2
= �:

Conversely, suppose for every � > 0 there is an a 2 D such that

d(f (b); f (c)) < � for all b; c 2 D such that a 4 b and a 4 c .

Specialise to c = a. For every � > 0 there is an a 2 D such that

d(f (b); f (a)) < � for all b 2 D such that a 4 b. Then

f (b) 2 B(f (a); �) if a 4 b. So B(f (a); �) 2 F . For all � > 0 there

is an x such that B(x ; �) 2 F . So F is a Cauchy �lter and f is a

Cauchy net.



Comments, examples

The image of a Cauchy sequences is always bounded because all

but �nitely many elements in the sequence lie in a ball.

The image of a Cauchy net doesn't have to be bounded.

We've seen that convergent �lters, nets, sequences are Cauchy.

The converse doesn't have to hold. �n = 1=2n is a Cauchy

sequence in (0;+1) but not a convergent sequence in (0;+1).
It is, of course, convergent in R.

There are other examples.

�n =

n∑
j=0

1

j !

is a Cauchy sequence in Q but is not a convergent sequence in Q.

It is, of course, convergent in R.

The upward closure of the set of intervals (0; b) for b > 0 is a

Cauchy �lter on (0;+1) but is not a convergent �lter.



Completeness

A metric space where every Cauchy �lter is a convergent �lter is

called complete

The preceding examples show that (0;+1) and Q are not

complete.

R is complete though, as is Rn. Every compact metric space is

complete. We can prove all of these facts at once, by proving

that if every closed ball in (X ; d) is compact then (X ; d) is

complete. Closed balls in Rn are compact by the Heine-Borel

Theorem. Closed balls in a compact metric space are compact

because closed subsets of a compact topological space are always

compact.



Proof (1/3)
Suppose F is a Cauchy �lter. Let

Q = f(x ; r) 2 X � R : r > 0;B(x ; r) 2 Fg

Choose some (y ; s) 2 Q. If (x ; r) 2 Q then B̄(x ; r) 2 F because

B(x ; r) � B̄(x ; r) and F is upward closed. If (x1; r1), . . . ,
(xm; rm) 2 Q then

m⋂
j=1

B̄(xj ; rj) 6= ?:

Let C be the set of sets of the form B̄(x ; r) \ B̄(y ; s) for

(x ; r) 2 Q. The intersection of �nitely many elements of C is

always non-empty. The elements of C are closed subsets of the

compact set B̄(y ; s). So the intersection of all elements of C is

non-empty, i.e. ⋂
(x ;r)2Q

(
B̄(x ; r) \ B̄(y ; s)

)
6= ?:



Proof (2/3)

⋂
(x ;r)2Q

(
B̄(x ; r) \ B̄(y ; s)

)
=

 ⋂
(x ;r)2Q

B̄(x ; r)

 \ B̄(y ; s)

=
⋂

(x ;r)2Q

B̄(x ; r)

since (y ; s) 2 Q so ⋂
(x ;r)2Q

B̄(x ; r) � B̄(y ; s):

So there is a z 2
⋂

(x ;r)2Q B̄(x ; r). For any given r > 0 choose an

x such that B(x ; r) 2 F . There must be one because F is a

Cauchy �lter. Then (x ; r) 2 Q so z 2 B̄(x ; r). Suppose
y 2 B(x ; r). Then d(x ; y) < r and d(x ; z) � r so d(y ; z) < 2r .

In other words, y 2 B(z ; 2r). This holds for all y 2 B(x ; r) so

B(x ; r) � B(z ; 2r):



Proof (3/3)

B(x ; r) � B(z ; 2r);

B(x ; r) 2 F , and F is upward closed, so B(z ; 2r) 2 F . So for

every r > 0 we have B(z ; 2r) 2 F . Therefore F converges to z

by the lemma from the end of the last lecture.

We've taken an arbitrary Cauchy �lter on X and shown that it

converges, so X is complete.


