MAU22200 Lecture 24

John Stalker

Trinity College Dublin

11 November 2021

Images of bounded sets under Lipschitz functions

If X and Y are metric spaces, $f: X \to Y$ is Lipschitz continuous and X is bounded then $f_*(X)$ is bounded.

This wouldn't be true if we replaced "Lipschitz continuous" with "continuous" or even "uniformly continuous".

Let (Y, d_Y) be any unbounded metric space. Let X = Y, but let d_X be the discrete metric on X. (X, d_X) a bounded metric space. Let $i: X \to Y$ be the identity function i(x) = x, but considered as a function from $(X, d_X) \to (Y, d_Y)$. i is continuous because any function from a space with the discrete metric to any topological space is continuous. i is also uniformly continuous. For any $\epsilon > 0$ let $\delta = 1/2$. $B_X(x, \delta) = \{x\}$ and $B_Y(i(x), \epsilon) = B_Y(x, \epsilon)$. $i^*(B_Y(i(x), \epsilon) = B_Y(x, \epsilon), x \in B_Y(x, \epsilon)$. So $B_X(x, \delta) \subseteq i^*(B_Y(i(x), \epsilon))$. Therefore i is uniformly continuous. There is a different counter-example in the notes.

Proof

If X and Y are metric spaces, $f: X \to Y$ is Lipschitz continuous and X is bounded then $f_*(X)$ is bounded. Proof: X is bounded so there's an r > 0 such that

$$d_X(s,t) \leq r$$
.

f is Lipschitz, so there's a $K \ge 0$ with

$$d_Y(f(s), f(t)) \leq K d_X(s, t).$$

$$d_Y(f(s), f(t)) \leq Kr < Kr + 1.$$

Kr + 1 > 0 and every pair w, z of points in $f_*(X)$ is of the form w = f(s), z = f(t) for some $s, t \in X$. So $f_*(X)$ is bounded.

Images of totally bounded sets

If X and Y are metric spaces, $f: X \to Y$ is uniformly continuous and X is totally bounded then $f_*(X)$ is totally bounded.

This is no longer true if we replace "uniformly continuous" with "continuous". Let X = (0, 1), $Y = (1, +\infty)$, both with the usual metric, and f(x) = 1/x. f is continuous and $f_*(X) = Y$. X is totally bounded. For any r > 0 choose $n > \frac{1}{2r}$, and then

$$X=(0,1)\subseteq \bigcup_{j=1}^n B\left(\frac{2j-1}{2n},r\right).$$

Y is not totally bounded. If $F \in (1, +\infty)$ and r > 0 then

$$r + \max_{x \in F} x \in (1, +\infty) \setminus \bigcup_{x \in F} B(x, r)$$

so we can't have $Y \subseteq \bigcup_{x \in F} B(x, r)$.

Proof

If X and Y are metric spaces, $f: X \to Y$ is uniformly continuous and X is totally bounded then $f_*(X)$ is totally bounded. Proof: Suppose r > 0. f is uniformly continuous so there is a $\delta > 0$ such that for all $x \in X$ $B_X(x, \delta) \subseteq f^*(B_Y(f(x), r))$. (X, d_X) is totally bounded so there are $x_1, \ldots, x_m \in X$ such that $X \subseteq \bigcup_{i=1}^m B_X(x_i, \delta)$.

$$f_*(X) \subseteq f_*\left(\bigcup_{j=1}^m B_X(x_j,\delta)\right) \subseteq \bigcup_{j=1}^m f_*\left(B_X(x_j,\delta)\right)$$
$$\subseteq \bigcup_{j=1}^m f_*\left(f^*\left(B_Y(f(x_j),r)\right)\right) \subseteq \bigcup_{j=1}^m B_Y(f(x_j),r),$$

because $f_*(f^*(S)) \subseteq S$ for any S. So $f_*(X)$ is totally bounded.

Distances to sets

The metric d gives the distance from a point to a point. We can also define the distance from a point to a set.

$$r(x) = \inf_{y \in A} d(x, y).$$

is the distance from x to A, if $A \neq \emptyset$. It's non-negative, and is zero if and only if $x \in \overline{A}$. It's also Lipschitz continuous, with K = 1. It's therefore uniformly continuous and continuous. Proof: If $x \in \overline{A}$ then $A \cap B(x, \delta) \neq \emptyset$ for all $\delta > 0$. In other words, there is a $y \in A$ such that $d(x, y) < \delta$. So $r(x) < \delta$. This holds for all $\delta > 0$ and $r(x) \ge 0$ so r(x) = 0. Conversely, if r(x) = 0 then $r(x) < \delta$ for all $\delta > 0$. So there is a $y \in A$ with $d(x, y) < \delta$, and $A \cap B(x, \delta) \neq \emptyset$. This holds for all $\delta > 0$, so $x \in \overline{A}$.

Proof of Lipschitz continuity

Trick: To show that $|r(s) - r(t)| \le d(s, t)$ we first show that $|r(s) - r(t)| \le d(s, t) + \delta$ for all $\delta > 0$.

Note that this trick works only because the inequality we want to prove is non-strict, i.e. \leq , rather than strict, i.e. <.

There is a $y \in A$ with $d(t, y) < r(t) + \delta$. Otherwise r(t) wouldn't be the infimum of d(t, y) over $y \in A$.

$$d(s, y) \leq d(s, t) + d(t, y) < d(s, t) + r(t) + \delta$$

So $r(s) \leq d(s, t) + r(t) + \delta$. In other words, $r(s) - r(t) \leq d(s, t) + \delta$. Similarly, $r(t) - r(s) \leq d(s, t) + \delta$. So

$$|r(s)-r(t)| \leq d(s,t)+\delta.$$

This holds for all δ , so

$$|r(s)-r(t)|\leq d(s,t).$$

This is the Lipschitz condition with K = 1.

A Urysohn-like result

If A and B are non-empty closed subsets in a metric space X and $A \cap B \neq \emptyset$ then there is a continuous function $f: X \to [0, 1]$ such that f(x) = 0 if $x \in A$ and f(x) = 1 if $x \in B$.

$$f(x) = \frac{r_A(x)}{r_A(x) + r_B(x)}$$

works. The denominator has no zeroes because A and B are disjoint and closed.

Metric spaces are normal

Suppose A and B are non-empty closed subsets in a metric space X and $A \cap B \neq \emptyset$. Let f be as on the previous slide and

 $V = f^*([0, 1/3)), \quad W = f^*((2/3, 1]).$

Then $A \subseteq V$ and $B \subseteq W$. Also V and W are open, because f is continuous. And $V \cap W = \emptyset$.

If A and B are non-empty closed subsets in a metric space X and $A \cap B \neq \emptyset$ then there are open subsets V and W such that $A \subseteq V$, $B \subseteq W$ and $V \cap W = \emptyset$. This is almost the definition of a normal space. We just need to drop the hypothesis that A and B are non-empty. But we can, since the conclusion follows trivially if either is empty.