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Images of bounded sets under Lipschitz functions

If X and Y are metric spaces, f : X ! Y is Lipschitz continuous

and X is bounded then f�(X ) is bounded.
This wouldn't be true if we replaced \Lipschitz continuous" with

\continuous" or even \uniformly continuous".

Let (Y ; dY ) be any unbounded metric space. Let X = Y , but let

dX be the discrete metric on X . (X ; dX ) a bounded metric space.

Let i : X ! Y be the identity function i(x) = x , but considered as

a function from (X ; dX )! (Y ; dY ). i is continuous because any

function from a space with the discrete metric to any topological

space is continuous. i is also uniformly continuous. For any � > 0

let � = 1=2. BX (x ; �) = fxg and BY (i(x); �) = BY (x ; �).
i�(BY (i(x); �) = BY (x ; �). x 2 BY (x ; �). So
BX (x ; �) � i�(BY (i(x); �). Therefore i is uniformly continuous.

There is a di�erent counter-example in the notes.



Proof

If X and Y are metric spaces, f : X ! Y is Lipschitz continuous

and X is bounded then f�(X ) is bounded.
Proof: X is bounded so there's an r > 0 such that

dX (s; t) � r :

f is Lipschitz, so there's a K � 0 with

dY (f (s); f (t)) � KdX (s; t):

dY (f (s); f (t)) � Kr < Kr + 1:

Kr + 1 > 0 and every pair w ; z of points in f�(X ) is of the form

w = f (s), z = f (t) for some s; t 2 X . So f�(X ) is bounded.



Images of totally bounded sets

If X and Y are metric spaces, f : X ! Y is uniformly continuous

and X is totally bounded then f�(X ) is totally bounded.

This is no longer true if we replace \uniformly continuous" with

\continuous". Let X = (0; 1), Y = (1;+1), both with the usual

metric, and f (x) = 1=x . f is continuous and f�(X ) = Y . X is

totally bounded. For any r > 0 choose n > 1
2r
, and then

X = (0; 1) �

n⋃
j=1

B

(
2j � 1

2n
; r

)
:

Y is not totally bounded. If F 2 (1;+1) and r > 0 then

r +max
x2F

x 2 (1;+1) n
⋃
x2F

B(x ; r)

so we can't have Y �
⋃
x2F B(x ; r).



Proof

If X and Y are metric spaces, f : X ! Y is uniformly continuous

and X is totally bounded then f�(X ) is totally bounded.

Proof: Suppose r > 0. f is uniformly continuous so there is a

� > 0 such that for all x 2 X BX (x ; �) � f �(BY (f (x); r)).
(X ; dX ) is totally bounded so there are x1, . . . , xm 2 X such that

X �
⋃m
j=1 BX (xj ; �).

f�(X ) � f�

 m⋃
j=1

BX (xj ; �)

 �

m⋃
j=1

f� (BX (xj ; �))

�

m⋃
j=1

f� (f
� (BY (f (xj); r))) �

m⋃
j=1

BY (f (xj); r);

because f�(f
�(S)) � S for any S . So f�(X ) is totally bounded.



Distances to sets

The metric d gives the distance from a point to a point. We can

also de�ne the distance from a point to a set.

r(x) = inf
y2A

d(x ; y):

is the distance from x to A, if A 6= ?. It's non-negative, and is

zero if and only if x 2 A. It's also Lipschitz continuous, with

K = 1. It's therefore uniformly continuous and continuous.

Proof: If x 2 A then A \ B(x ; �) 6= ? for all � > 0. In other

words, there is a y 2 A such that d(x ; y) < �. So r(x) < �. This

holds for all � > 0 and r(x) � 0 so r(x) = 0.

Conversely, if r(x) = 0 then r(x) < � for all � > 0. So there is a

y 2 A with d(x ; y) < �, and A \ B(x ; �) 6= ?. This holds for all
� > 0, so x 2 A.



Proof of Lipschitz continuity
Trick: To show that jr(s)� r(t)j � d(s; t) we �rst show that

jr(s)� r(t)j � d(s; t) + � for all � > 0.

Note that this trick works only because the inequality we want to

prove is non-strict, i.e. �, rather than strict, i.e. <.

There is a y 2 A with d(t; y) < r(t) + �. Otherwise r(t) wouldn't
be the in�mum of d(t; y) over y 2 A.

d(s; y) � d(s; t) + d(t; y) < d(s; t) + r(t) + �:

So r(s) � d(s; t) + r(t) + �. In other words,

r(s)� r(t) � d(s; t) + �. Similarly, r(t)� r(s) � d(s; t) + �. So

jr(s)� r(t)j � d(s; t) + �:

This holds for all �, so

jr(s)� r(t)j � d(s; t):

This is the Lipschitz condition with K = 1.



A Urysohn-like result

If A and B are non-empty closed subsets in a metric space X and

A \B 6= ? then there is a continuous function f : X ! [0; 1] such
that f (x) = 0 if x 2 A and f (x) = 1 if x 2 B.

f (x) =
rA(x)

rA(x) + rB(x)

works. The denominator has no zeroes because A and B are

disjoint and closed.



Metric spaces are normal

Suppose A and B are non-empty closed subsets in a metric space

X and A \ B 6= ?. Let f be as on the previous slide and

V = f �([0; 1=3)); W = f �((2=3; 1]):

Then A � V and B �W . Also V and W are open, because f is

continuous. And V \W = ?.
If A and B are non-empty closed subsets in a metric space X and

A \ B 6= ? then there are open subsets V and W such that

A � V , B �W and V \W = ?. This is almost the de�nition of

a normal space. We just need to drop the hypothesis that A and

B are non-empty. But we can, since the conclusion follows

trivially if either is empty.


