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Images of compact sets are compact

If X is compact and f : X ! Y is continuous then f�(X ) is
compact.

Suppose G is an open cover of f�(X ). The set H of U such that

U = f �(V ) for some V 2 G is an open cover of X . This can be

written more succinctly as H = (f �)
�
(G). Each U 2 H is open

because f is continuous. They cover X because f (x) 2 f�(X ) so
f (x) 2 V for some V 2 G and therefore x 2 f �(V ) = U for the

corresponding U.

X is compact, so there's a �nite subcover E of H. For each U 2 E

choose a V 2 G such that U = f �(V ). There might be more than

one, but choose only one. Let F be the set of V you've chosen.

It's a �nite subcover of G. It covers f�(X ) because if y 2 f�(X )
then y = f (x) for some x 2 X and x 2 U for some U 2 E . Then

x 2 f �(V ) for some V 2 F . So f (x) 2 V , i.e. y 2 V .



A separation property

If X is Hausdor�, A 2 }(X ) is compact and y 2 X n A then there

are open sets V and W such that A � V , y 2W and

V \W = ?.
Note that the special case A = fxg is just the de�nition of a

Hausdor� topology.

The proof has a pattern which is used often.

For each x 2 A we have open Vx and Wx such that x 2 Vx ,

y 2Wx and Vx \Wx = ?. There's an application of the Axiom

of Choice hidden in the notation. The sets Vx for x 2 A form an

open cover of A. A is compact so there's a �nite subcover. In

other words, we only need �nitely many x 's. There's a �nite

subset F � A such that A �
⋃
x2F Vx . Set V =

⋃
x2F Vx and

W =
⋂
x2F Wx . W is open because it's an intersection of �nitely

many open sets. A � V . y 2W . If z 2 V \W then z 2 Vx for

some x 2 F , but then z 2Wx and Vx \Wx = ?.



Consequences

If X is Hausdor�, A 2 }(X ) is compact and y 2 X n A then there

are open sets V and W such that A � V , y 2W and

V \W = ?.
For any y 2 X n A there is an open Wy such that y 2W and

Wy � X n A. The union of all such Wy for y 2 X n A is X n A,

which is therefore open, so A is closed.

If X is compact Hausdor� and A;B 2 }(X ) are such that

A \ B = ? then there are open V and W such that A � V ,

B �W and V \W = ?.
A is compact. For each y 2 B choose open Vy and Wy such that

A � Vy , y 2Wy and Vy \Wy = ?> The Wy cover B, so there's

a �nite F � B such that B �
⋃
y2F Wy . Set V =

⋂
y2F Vy and

W =
⋃
y2F Wy . V is open because it's an intersection of �nitely

many open sets. A � V . B �W . V \W = ?.



Intersections

If K is a set of compact subsets of a Hausdor� space then⋂
K2K K is compact.

Each K 2 K is closed, by the previous slide, so their intersection

is closed.
⋂
K2K K � L for any L 2 K. So

⋂
K2K K � L is a

closed subset of a compact space, and hence compact.

(X ; T ) is compact if and only if whenever C is a set of closed

subsets of X such that
⋂
V2E V 6= ? for all �nite E � C we have⋂

V2C V 6= ?.
This is really just a restatement of the de�nition in using

complements, but it's a useful restatement. It's most often

applied to C = fK1;K2; : : :g where the K 's are a nested sequence

of non-empty compact subsets, i.e. K1 � K2 � � � � .



Tychono� (1/2)

Tychono�'s Theorem says that any product of compact sets is

compact. This is actually equivalent to Zorn's Lemma or the

Axiom of Choice. I'm not aware of any short proof.

The special case of the product of two compact sets is much

easier. You can get �nite products from this case by induction on

the number of factors.

Suppose then that X and Y are compact and let P = X � Y .

Suppose G is an open cover of P. If (x ; y) 2 P then (x ; y) 2 Z

for some Z 2 G. There must be V 2 TX and W 2 TY such that

x 2 V , y 2W and V �W � Z . Choose such Z , V and W for

each (x ; y) 2 P and call your choices Zx ;y , Vx ;y and Wx ;y . For

�xed x the sets Wx ;y as y ranges over Y cover Y . It has a �nite

subcover, so there's a �nite Fx 2 }(X ) such that

Y =
⋃
y2Fx

Wx ;y . Let Ux =
⋂
y2Fx

Vx ;y . Ux is an open

neighbourhood of x . The set of Ux as x ranges over X are an

open cover of X , and so have a �nite subcover. So there is a

�nite E 2 }(X ) such that X =
⋃
x2E Ux .



Tychono� (2/2)

I claim that the set of Zx ;y where x 2 E and y 2 Fx are a �nite

subcover of G. It's a �nite union of �nite sets, so it's certainly

�nite. Each Zx ;y 2 G, so it's a subset. What's harder to show is

that it's a cover.

Suppose (s; t) 2 P. s 2 X so s 2 Ux for some x 2 E . Then

t 2Wx ;y for some y 2 Fx . s 2 Vx ;y so (s; t) 2 Vx ;y �Wx ;y .

Vx ;y �Wx ;y � Zx ;y so (s; t) 2 Zx ;y . So every element of P

belongs to some Zx ;y where x 2 E and y 2 Fx .



The Heine-Borel Theorem

The Heine-Borel Theorem says that subsets of Rn are compact if

and only if they are closed and bounded. This gives us many

examples of compact spaces. We saw a special case in Lecture

19: Intervals in R are compact if and only if they are empty or of

the form [a; b]. We'll use that special case together with most of

the properties from the these two lectures to prove Heine-Borel.

R
n is a metric space, hence Hausdor�, and so all compact subsets

are closed. If A 2 Rn is not bounded then the sets B(0; r) for
r > 0 form an open cover of A with no �nite subcover, so A must

be bounded. This establishes the \only if" part.

Suppose A is closed and bounded. Bounded means it's contained

in B(0; r) for some r > 0. Therefore it's contained in the product

of n copies of the interval [�r ; r ]. These intervals are compact

and so is their product. A is a closed subset of a compact space

and so is compact. This establishes the \if" part.


