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Compactness (definitions)

The concept of compactness is very important, but the
definitions are opaque. You hope not to use them most of the
time, but use their various properties instead.
» An open cover of (X, Tx) isa G C Tx such that
X =Uyeg U-
» Fis a subcover of G if F C G and F is an open cover.
» (X, Tx) is compact if every open cover of X has a finite
subcover.
> A subset A of X is compact if (A, Ta) is compact, where T,
is the subspace topology on A.
> A s relatively compact if its closure is compact.

> X is o-compact if it is the union of countably many compact
subsets.



Subsets

There's an alternate notion of open covers for subsets.

» G is an open cover of A with respect to (X, Tx) if G C Tx
and A C Uyeg U.

This is not the same as an open cover of (A, Ta), which is a
subset of 74.
A is compact if and only if every open cover of A with respect to
(X, Tx) has a finite subcover. This is a proposition, not a
definition, since we already defined what it meant for A to be
compact. Once the proposition is proved you can use it as if it
were a definition though.
Note that compactness is still an absolute property though, not a
relative one. Whether a subset is compact depends only on its
topology, not on what space it’s a subset of.



Examples

> Every finite space is compact, because open covers can only
be finite.

» Discrete spaces are compact if and only if they are finite. If
X is infinite the set of all sets {x} for x € X is an open cover
with no finite subcover.

» Intervals in R are compact if and only if they're empty or of
the form [a, b].

» The empty interval is finite, so is compact.

> R and the semi-infinite intervals [a, +0), (a, +00), (—o0, b]
and (—oo, b) are not compact because the set of all sets
(=r,r) for r > 0 is an open cover without a finite subcover.

> The intervals (a, b), [a, b) and (a, b] are not compact because
the sets (—oo, y) with y < b or (x, +00) with x > a form an
open cover without a finite subcover.

P> The only thing left to prove is that [a, b] is compact.



[a, b] is compact (1/2)

Assume [a, b] is not compact, i.e. that it has an open cover G

which has no finite subcover. g is an open cover of [a, 252] and
of [&F2, b]. If F; was a finite subcover for [a, #2] and F, was a
finite subcover for [252, b] then F; U F, would be a finite
subcover for [a, b], but we assumed there wasn’t one, so at least
one of the intervals has no finite subcover of G. Suppose it's

[a, 252]. G is an open cover of [a, 32F2] and of [32fL, 218 1t
has no finite subcover for at least one of these. Suppose it's

3ath, ib[]]. G is an open cover of [32Eb 52430] gng of
(52136 a1b]
g 2 |



[a, b] is compact (2/2)

Continuing in this way we get a sequence of subintervals of [a, b],
for none of which does G have a finite subcover. The k’th interval
is of Iength . The left endpoints form an increasing sequence

while the r|ght endpoints form an decreasing sequence. They have
a common limit, which is in [a, b]. Let x € [a, b] be this common

limit. x € [a, b] so x € U for some U € G. U is open so there’s an
d > 0 such that B(x,d) C U. For k sufficiently Iarge 4 .< 9, s0

the k'th interval is contained in U. But then {U} is a f|n|te cover,
so we have a contradiction. Therefore [a, b] is compact.



Properties
Usually we try to avoid using the definition directly. Instead we
use various properties of compact sets.
» Closed subsets of compact sets are compact.
» Finite unions of compact subsets are compact.

» The image of a compact set under a continuous function is
compact.

» Compact subsets of a Hausdorff space are closed.

v

Products of compact spaces are compact.

> Subsets of R" are compact if and only if they are closed and
bounded.

» Continuous real valued functions on a compact set have a
minimum and maximum.

All of these are proved in the notes, except the statement for
products is proved only for finite products. | will also cover most
of the proofs in lecture.



Two proofs

Closed subsets of compact sets are compact: Suppose (X, Tx) is
compact and A € p(X) is closed.

If G is an open cover of A then G U {X \ A} is an open cover

of X. X is compact so G U {X \ A} has a finite subcover F. F is
a finite open cover of A, but possibly not a subset of G, so may
not be a finite subcover, but F\ {X \ A} is a finite subcover.
Finite unions of compact subsets are compact: If (X, 7Tx) is a
topological space and K1, ..., Km € p(X) are compact then

U, Kj is compact.

If G is an open cover of |JIZ; Kj then it's also an open cover of K;
for each j. Kj is compact so there’s a finite F; C G such that F;
is an open cover of K;. Then [J; F; is an open cover of J; K;.
It's finite. It's a subset of G. So it's a finite subcover of [J;Z; K;.



