MAU22200 Lecture 19

John Stalker

Trinity College Dublin

1 November 2021

Compactness (definitions)

The concept of compactness is very important, but the definitions are opaque. You hope not to use them most of the time, but use their various properties instead.

- An open cover of (X, \mathcal{T}_X) is a $\mathcal{G} \subseteq \mathcal{T}_X$ such that $X = \bigcup_{U \in \mathcal{G}} U$.
- \mathcal{F} is a *subcover* of \mathcal{G} if $\mathcal{F} \subseteq \mathcal{G}$ and \mathcal{F} is an open cover.
- ► (X, T_X) is compact if every open cover of X has a finite subcover.
- A subset A of X is compact if (A, \mathcal{T}_A) is compact, where \mathcal{T}_A is the subspace topology on A.
- ► A is relatively compact if its closure is compact.
- X is σ-compact if it is the union of countably many compact subsets.

Subsets

There's an alternate notion of open covers for subsets.

• \mathcal{G} is an open cover of A with respect to (X, \mathcal{T}_X) if $\mathcal{G} \subseteq \mathcal{T}_X$ and $A \subseteq \bigcup_{U \in \mathcal{G}} U$.

This is not the same as an open cover of (A, \mathcal{T}_A) , which is a subset of \mathcal{T}_A .

A is compact if and only if every open cover of A with respect to (X, \mathcal{T}_X) has a finite subcover. This is a proposition, not a definition, since we already defined what it meant for A to be compact. Once the proposition is proved you can use it as if it were a definition though.

Note that compactness is still an absolute property though, not a relative one. Whether a subset is compact depends only on its topology, not on what space it's a subset of.

Examples

- Every finite space is compact, because open covers can only be finite.
- ► Discrete spaces are compact if and only if they are finite. If X is infinite the set of all sets {x} for x ∈ X is an open cover with no finite subcover.
- Intervals in **R** are compact if and only if they're empty or of the form [a, b].
 - The empty interval is finite, so is compact.
 - ▶ **R** and the semi-infinite intervals $[a, +\infty)$, $(a, +\infty)$, $(-\infty, b]$ and $(-\infty, b)$ are not compact because the set of all sets (-r, r) for r > 0 is an open cover without a finite subcover.
 - The intervals (a, b), [a, b) and (a, b] are not compact because the sets (-∞, y) with y < b or (x, +∞) with x > a form an open cover without a finite subcover.
 - ▶ The only thing left to prove is that [*a*, *b*] is compact.

[a, b] is compact (1/2)

Assume [a, b] is not compact, i.e. that it has an open cover \mathcal{G} which has no finite subcover. \mathcal{G} is an open cover of $\left[a, \frac{a+b}{2}\right]$ and of $\begin{bmatrix} \frac{a+b}{2}, b \end{bmatrix}$. If \mathcal{F}_l was a finite subcover for $\begin{bmatrix} a, \frac{a+b}{2} \end{bmatrix}$ and $\overline{\mathcal{F}}_r$ was a finite subcover for $\begin{bmatrix} \frac{a+b}{2} & b \end{bmatrix}$ then $\mathcal{F}_I \cup \mathcal{F}_r$ would be a finite subcover for [a, b], but we assumed there wasn't one, so at least one of the intervals has no finite subcover of \mathcal{G} . Suppose it's $[a, \frac{a+b}{2}]$. \mathcal{G} is an open cover of $[a, \frac{3a+b}{4}]$ and of $[\frac{3a+b}{4}, \frac{a+b}{2}]$. It has no finite subcover for at least one of these. Suppose it's $\begin{bmatrix} \frac{3a+b}{4}, \frac{a+b}{2} \end{bmatrix}$. \mathcal{G} is an open cover of $\begin{bmatrix} \frac{3a+b}{4}, \frac{5a+3b}{8} \end{bmatrix}$ and of $\begin{bmatrix} \frac{5a+3b}{4}, \frac{b+2}{2} \end{bmatrix}$

[a, b] is compact (2/2)

Continuing in this way we get a sequence of subintervals of [a, b], for none of which does \mathcal{G} have a finite subcover. The k'th interval is of length $\frac{b-a}{2^k}$. The left endpoints form an increasing sequence while the right endpoints form an decreasing sequence. They have a common limit, which is in [a, b]. Let $x \in [a, b]$ be this common limit. $x \in [a, b]$ so $x \in U$ for some $U \in \mathcal{G}$. U is open so there's an $\delta > 0$ such that $B(x, \delta) \subseteq U$. For k sufficiently large $\frac{b-a}{2^k} < \delta$, so the k'th interval is contained in U. But then $\{U\}$ is a finite cover, so we have a contradiction. Therefore [a, b] is compact.

Properties

Usually we try to avoid using the definition directly. Instead we use various properties of compact sets.

- Closed subsets of compact sets are compact.
- Finite unions of compact subsets are compact.
- The image of a compact set under a continuous function is compact.
- Compact subsets of a Hausdorff space are closed.
- Products of compact spaces are compact.
- Subsets of Rⁿ are compact if and only if they are closed and bounded.
- Continuous real valued functions on a compact set have a minimum and maximum.

All of these are proved in the notes, except the statement for products is proved only for finite products. I will also cover most of the proofs in lecture.

Two proofs

Closed subsets of compact sets are compact: Suppose (X, \mathcal{T}_X) is compact and $A \in \wp(X)$ is closed.

If \mathcal{G} is an open cover of A then $\mathcal{G} \cup \{X \setminus A\}$ is an open cover of X. X is compact so $\mathcal{G} \cup \{X \setminus A\}$ has a finite subcover \mathcal{F} . \mathcal{F} is a finite open cover of A, but possibly not a subset of \mathcal{G} , so may not be a finite subcover, but $\mathcal{F} \setminus \{X \setminus A\}$ is a finite subcover. Finite unions of compact subsets are compact: If (X, \mathcal{T}_X) is a topological space and $K_1, \ldots, K_m \in \wp(X)$ are compact then $\bigcup_{i=1}^m K_i$ is compact.

If \mathcal{G} is an open cover of $\bigcup_{j=1}^{m} K_j$ then it's also an open cover of K_j for each j. K_j is compact so there's a finite $\mathcal{F}_j \subseteq \mathcal{G}$ such that \mathcal{F}_j is an open cover of K_j . Then $\bigcup_{j=1}^{m} \mathcal{F}_j$ is an open cover of $\bigcup_{j=1}^{m} K_j$. It's finite. It's a subset of \mathcal{G} . So it's a finite subcover of $\bigcup_{j=1}^{m} K_j$.