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Topologies from functions

Suppose f : X ! Y

I there is, for any topology TY on Y , a weakest topology TX
on X among those which make f continuous, and

I there is, for any topology TX on X , a strongest topology TY
on Y among those which make f continuous.

There's also a strongest TX and weakest TY , but that's less

interesting: they're the discrete topology on X and the trivial

topology on Y .

These topologies can be described more explicitly. In the �rst part

TX = (f �)�(TY ) while in the second part TY = f ��(TX ).
This is often used to construct topologies, since it's often clearer

which functions should be continuous than which sets should be

open.



Subspace topology

Suppose that (X ; TX ) is a topological space and A � X . What

topology should A have?

You could guess, and you'd probably guess correctly.

Or you could use the proposition and de�ne TA to be the weakest

topology on A for which the inclusion i : A! X , de�ned by

i(x) = x , is continuous. We call this the subspace topology on A.

You still want a more explicit description though. The proposition

which tells us there's a weakest topology which makes i

continuous also tells us what it is.

TA = (i�)�(TX ):

U 2 (i�)�(TX ) if and only if U = (i�)(V ) for some V 2 TX .

x 2 (i�)(V ) means i(x) 2 V for some x 2 A. i(x) = x . So

x 2 (i�)(V ) i� x 2 A and x 2 V , i.e. x 2 A \ V . In other words,

i�(V ) = A \ V . So TA is set of sets of the form A \ V where

V 2 TX .



Open and closed are relative terms

Note that open and closed are relative terms, not absolute! It

doesn't make sense to say that U is open or closed, only that it is

an open or closed subset of some larger set, equipped with some

topology. We can only omit the reference to the containing set or

its topology if they are obvious from context.

For example, (0; 1] is not an open subset of R, with the usual

topology, but it is an open subset of [�1; 1] with the subspace

topology, since

(0; 1] = [�1; 1] \ (0; 2)

and (0; 2) is an open subset of R. Similarly [0; 1) is a closed

subset of (�1; 1), with the subspace topology, but not of R, with

the usual topology.



Properties of the subspace topology (1/2)

Suppose A � Y and f : X ! A is a function. Then f is

continuous if and only if i � f is continuous. It's helpful when

reading statements about compositions to draw diagrams like this.

X A

Y

f

i�f
i

For historical reasons they're called commutative diagrams.

\only if": The topology TA was de�ned to make i continuous and

compositions of continuous functions are continuous.

\if": If W 2 TY then (i � f )�(W ) 2 TX .
(i � f )�(W ) = f �(i�(W )). i�(W ) = A \W . So if W 2 TY then

f �(A \W ) 2 TX . Every element of TA is A \W for some

W 2 TY . So f is continuous.



Properties of the subspace topology (2/2)

Any subspace of a Hausdor� space is Hausdor�.

Remember that (S ; T ) is Hausdor� if for any x 6= y there are

U 2 T , V 2 T such that x 2 U, y 2 V , U \ V = ?.
Suppose (X ; TX ) is Hausdor� A � X and TA is the subspace

topology on A. For any x 6= y there are U 2 TX , V 2 TX such

that x 2 U, y 2 V , U \ V = ?. If x ; y 2 A then x 2 A \ U,

y 2 A \ V . A \ U 2 TA and A \ V 2 TA. Also

(A \ U) \ (A \ V ) = A \ (U \ V ) = ?. So (A; TA) is Hausdor�.
We could also say that Hausdor� i� for any x 6= y there are

U 2 O(x), V 2 O(y) such that U \ V = ?. The notation for

sets of neighbourhoods is convenient, but doesn't mention the

topological space, so it would have been ambiguous here.



Quotient topology

Suppose that (X ; TX ) is a topological space and � is an

equivalence relation on X . Let E be the set of equivalence classes

with respect to �. What topology should E have?

You could guess, and you might guess correctly, or you could use

the proposition from the �rst slide.

There's a natural function f from X to E which takes each x 2 X

to its equivalence class. We choose the topology on E to be the

strongest topology on E such that f is continuous. This is called

the quotient topology on E .

One can de�ne it in more generality, for any function f : X ! Y .

Y needn't be the set of equivalence classes of an equivalence

relation � and f needn't be the function taking elements to their

equivalence classes. The extra generality is mostly an illusion

though.



Properties of the quotient topology

Given f : X ! Y and TX the quotient topology TY is the

strongest topology such that f is continuous. U 2 TY if and only

if f �(U) 2 TX .
If f : X ! Y and Y is given the quotient topology then

g : Y ! Z is continuous if and only if g � f is continuous.

X Y

Z

f

g�f
g

\only if": f is continuous by construction so if g is continuous

then g � f is continuous.

\if": The quotient topology is TY = f ��(TX ).
f �(V ) 2 TX , V 2 f ��(TX ), V 2 TY . If V = g�(W ) and
W 2 TZ then f �(V ) = (g � f )�(W ) 2 TX since g � f is

continuous. So V 2 TY . If V = g�(W ) and W 2 TZ then

V 2 TY . In other words, g is continuous.



Non-properties of the quotient space

Unlike the subspace case, we don't generally get a Hausdor�

topology on the quotient space, even if we started from a

Hausdor� topology on the domain of f . There's an example in

the notes with f : R! R=Q. The quotient topology on R=Q is

the trivial topology, which is not Hausdor�.

There aren't many useful theorems which don't have Hausdor� in

their hypotheses, so the quotient topology is less useful than the

subspace topology.


