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Indexed collections of sets (1/3)

There are various types of products of sets we might consider,

e.g.

I X � Y

I R
n = R� � � � � R

I
∏

x2Rn;r>0 B(x; r).

The �rst example is straightforward, at least if X 6= Y . We can

call the projection onto the �rst factor �X and the projection onto

the second factor �Y if X 6= Y . �X (x ; y) = x and �Y (x ; y) = y .

This doesn't work if X = Y , by we can still call them �1 and �2.

For Rn we don't want to call all n projections �R. We can safely

call them �1, . . . , �n.

In the last example we can't number the factors since there are

uncountably many. If we need to identify the projection onto a

particular factor we could call it �B(x;r), or just �x;r .



Indexed collections of sets (2/3)

We need a way to identify the factor sets in a product which

I isn't just the sets, since there might be repeated factors, and

I isn't numbering them in order, since there could be

uncountably many.

We didn't run into this problem for unions and intersections, even

uncountable ones, because repeated sets didn't matter.

What we need is a set of labels. If X 6= Y would could use X and

Y as labels for the factors in X � Y . If X = Y we could label

them as 1 and 2, or as a and b for any a 6= b. For

R
n = R� � � � � R the obvious labels are 1, . . . , n. For∏
x2Rn;r>0 B(x; r) we can label the factors by x and r . Here the

label set is uncountable.

Allowing the set of labels to be arbitrary adds a layer of notation,

but means we never need to worry about repeated factors or

uncountably many factors.



Indexed collections of sets (3/3)

An indexed collection of sets is a function j from a label set L to

a set of sets A. It serves to identify factor sets.

For X � Y with X 6= Y you could take L = fX ;Y g and j(�) = �.

Or you could take L = f1; 2g, j(1) = X and j(2) = Y . This works

even if X = Y .

For Rn the natural choice is L = f1; : : : ; ng and j(k) = R for all

k 2 L.

For the product of balls we can take L = R
n � R+ and

j((x; r)) = B(x; r).
We �rst met the indexing problem for the disjoint union of two

sets, but it applies to arbitrary disjoint unions and to arbitrary

products. Products are more important, but disjoint unions are

simpler.



Disjoint unions

For a pair of sets X and Y with labels a and b the disjoint union

of X and Y is the set of pairs (a; x) for x 2 X or (b; y) for
y 2 Y . For a general indexed collection of sets j : L! A it's the

pairs (�; x) where � 2 L and x 2 j(�).
For each label � 2 L there's an inclusion function i� from j(�) to
the disjoint union de�ned by i�(x) = (�; x). The disjoint union is

the union of the images all these inclusion functions. The images

corresponding to distinct labels are disjoint, even if the

corresponding sets intersect, or are the same. This is why it's

called the disjoint union.



Products

There's similar construction of products. You can think of Rn as

a function from f1; : : : ; ng to R. If the factors are di�erent it's

more complicated. An element of X � Y \is" a function f from

fa; bg such that f (a) 2 X and f (b) 2 Y . What's it a function to?

X [ Y .

In general we want to de�ne the product of an indexed collection

of sets j : L! A to be the set of functions from f : L!
⋃
X2A X

such that f (�) 2 j(�).
Just as we have inclusions in the disjoint union, we have

projections from the product onto the factors. ��(f ) = f (�).
Products are the main reasons we're considering indexed

collections of sets. We'll want products of indexed collections of

topological spaces. Of course we'll want a topology on that

product. Roughly speaking, it will be chosen to make all the

projections continuous.



Choice

The functions which make up the product are called choice

functions. If j(�) = ? for some � 2 L then there is no f such

that f (�) 2 j(�), so there are no choice functions and the

product is empty.

What about the converse? Is the product of non-empty sets

non-empty? This is, more or less, the Axiom of Choice: every

indexed collection of non-empty sets has a choice function. For

us it's not an axiom, but a theorem, proved using Zorn's Lemma.

The proof in the notes is structured a bit di�erently from the

other applications of Zorn's Lemma. We want a function from L

and the the proof starts from the empty function on the empty

sets and gradually adds elements to the domain. It could have

been structured like the other proofs, or they could have been

structured like it. This version is probably more intuitive, but a bit

less e�cient.



Topological spaces

Recall that a topological space is a pair (X ; T ) where
T 2 }(}(X )) is such that

I ? 2 T and X 2 T .

I If V ;W 2 T then V \W 2 T .

I If E � T then
⋃
V2E V 2 T .

We sometimes say T is \closed" under �nite intersections and

arbitrary unions. Unfortunately the word \closed" has an

unrelated meaning in topology. The elements of T are called

\open" sets and their (relative) complements are called \closed"

sets.

For any metric space there is a natural topology, the one whose

open sets are the ones which contain an open ball about each of

their points. There are some interesting topologies not of this

form, e.g. the Zariski topology. We can also get non-metrisable

topologies from various constructions, e.g. products.



Structure of notes

Chapter 3 is about general topological spaces. The �rst few

sections are available online.

Eventually we mostly care about metric spaces, but we won't

assume we have a metric until Chapter 4. Metric spaces are a

good source of examples in Chapter 3 though. And we will treat

one theorem, Heine-Borel, about normed vector spaces in this

chapter.


