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Countable sets (1/2)

There are two di�erent conventions for what countable means

but the convention in this module is that X is countable if

#X � #N. It's called countably in�nite if #X = #N.
Roughly, countable means not much larger than the natural

numbers. Proper supersets of the natural numbers can be

countable though. Z and Q are both countable.

N�N is also countable. The idea is simple enough. N�N is the

set of points with integer coordinates in the �rst quadrant of the

plane. They're all on a line x + y = q. Order them in increasing

order of q, and in increasing order of y within each line, labeling

each with the next available natural number. You'll label each

point with a unique such number. You can write formulae for this.

They're in the notes.



Countable sets (2/2)

There are various ways to prove a set is countable, if you can

build it from other sets which are known to be countable.

1. If f : X ! Y is an injection and Y is countable

then X is countable.

2. If X � Y and Y is countable then X is countable.

3. If g : Y ! X is a surjection and Y is countable

then X is countable.

4. If X and Y are countable then so is X � Y .

5. Suppose A is a countable set and then each X 2 A

is a countable set. Then [X2AX is countable.

6. If X and Y are countable then so is X [ Y .

You can use these, in combination, to show that the set of

algebraic numbers is countable.



The Cantor Set (1/3)

The Cantor Set is the image of the function

f (A) =
2

3

∑
j2A

3�j

from }(N) to R. f (A) � 0 because it's a sum of non-negative

terms. Similarly, f (N n A) � 0.

f (A) + f (N n A) =
2

3

∑
j2N

3�j = 1:

So 0 � f (A) � 1. Set C = f�(}(N)). Then C � [0; 1].



The Cantor Set (2/3)

De�ne s : }(N)! }(N) by

s(A) = fi 2 N : i + 1 2 Ag:

E.g. s(f2; 3; 5; 7; : : :g) = f1; 2; 4; 6; : : :g.

f (s(A)) =
2

3

∑
i+12A

3�i =
2

3

∑
j2A

j>0

3�j+1:

f (A) =

{
1
3
f (s(A)) if 0 =2 A

2
3
+ 1

3
f (s(A)) if 0 2 A

x 2 C if and only if x = 1
3
y or x = 2

3
+ 1

3
y where y 2 C . C is the

union of two scaled copies of C .



The Cantor Set (3/3)

x 2 C if and only if x = 1
3
y or x = 2

3
+ 1

3
y where y 2 C .

y 2 [0; 1] so x 2
[
0; 1

3

]
[
[
2
3
; 1
]
. So C �

[
0; 1

3

]
[
[
2
3
; 1
]
.

y 2
[
0; 1

3

]
[
[
2
3
; 1
]
so x 2

[
0; 1

9

]
[
[
2
9
; 1
3

]
[
[
2
3
; 7
9

]
[
[
8
9
; 1
]
.

C �
[
0; 1

9

]
[
[
2
9
; 1
3

]
[
[
2
3
; 7
9

]
[
[
8
9
; 1
]
.

To get C , start with [0; 1]. Remove the middle third
(
1
3
; 2
3

)
from

[0; 1], leaving the two intervals
[
0; 1

3

]
and

[
2
3
; 1
]
. Remove the

middle thirds of those intervals,
(
1
9
; 2
9

)
and

(
7
9
; 8
9

)
, leaving the

four intervals
[
0; 1

9

]
,
[
2
9
; 1
3

]
,
[
2
3
; 7
9

]
and

[
8
9
; 1
]
. Remove the middle

thirds of those intervals, . . . . What's left is C , a.k.a. the Cantor

Middle Thirds Set.

f is a function from }(N) to R. y 2 C i� y = f (A) for some

A 2 }(N). De�ne g from }(N) to C by g(A) = f (A). g is a

surjection. It's also an injection, as proved in the notes. So it's a

bijection and #}(N) = #C . #N < #}(N) so #N < #C . C is

not countable. C � R, so R is also uncountable.



Proofs of Proposition 2.7.1 (1/4)

Suppose X and Y are sets. There is an injection f : X !

Y or there is an injection g : Y ! X.

Consider the following statements on a set A � X � Y :

1. For each x in X there is at most one y 2 Y such that

(x ; y) 2 A.

2. For each y in Y there is at most one x 2 X such that

(x ; y) 2 A.

3. For each x in X there is at least one y 2 Y such that

(x ; y) 2 A.

4. For each y in Y there is at least one x 2 X such that

(x ; y) 2 A.

If A satis�es (1) and (3) we can de�ne f (x) to be the unique y

such that (x ; y) 2 A. This f is injective if A satis�es (2) as well.

If A satis�es (2) and (4) we can de�ne g(y) to be the unique x

such that (x ; y) 2 A. This g is injective if A satis�es (1) as well.



Proofs of Proposition 2.7.1 (2/4)

A is the graph of f , or nearly the graph of g. One strategy for

constructing it is to start with an A satisfying (1) and (2) and

add points, without violating those, until (3) or (4) is satis�ed.

1. For each x in X there is at most one y 2 Y such that

(x ; y) 2 A.

2. For each y in Y there is at most one x 2 X such that

(x ; y) 2 A.

3. For each x in X there is at least one y 2 Y such that

(x ; y) 2 A.

4. For each y in Y there is at least one x 2 X such that

(x ; y) 2 A.

? satis�es (1) and (2). If we have an A satisfying (1) and (2) we

can safely add (x ; y) to it as long as there is no p 2 X such that

(p; y) 2 A or q 2 Y such that (x ; q) 2 A. If we can't �nd such an

(x ; y) then either (3) or (4) is satis�ed.



Proofs of Proposition 2.7.1 (3/4)

If X and Y are �nite then so is X � Y and this process stops

after �nitely many steps.

If X and Y are in�nite then the process never stops.

If X and Y are countable then so is X � Y and if we visit pairs

(x ; y) in order then we can be sure of visiting all of them. At no

�nite stage does our A satisfy (3) or (4), but the union of all of

them does, because every pair gets considered and if it wasn't

added then that was because we already had a (p; y) or an (x ; q)
in A. Taking the union is �ne, since the union of any increasing

sequence of sets satisfying (1) and (2) still satis�es (1) and (2).

Note that if you didn't order them then the union might not

satisfy (3) or (4). You could visit in�nitely many but still not visit

all of them.



Proofs of Proposition 2.7.1 (4/4)

It's mainly the uncountable case that we need Zorn's lemma for.

S is de�ned to be the set of all Z � X � Y such that

1. For each x in X there is at most one y 2 Y such that

(x ; y) 2 Z .

2. For each y in Y there is at most one x 2 X such that

(x ; y) 2 Z .

So in our previous constructions the A at each stage was an

element of S . If R is a totally ordered subset of S with respect to

the inclusion relation then R has an upper bound, namely

B =
⋃

Z2R Z . This is in S because the union of any totally

ordered set of sets satisfying (1) and (2) still satis�es (1) and (2).

Zorn's Lemma promises us a maximal element M of S . If you add

a pair (x ; y) to M then you get a larger set, so that set can't be

in S . Adding it must cause (1) or (2) to fail. A Z to which you

can't add any new pair satis�es either (3) or (4).



When to use Zorn's Lemma

Zorn is likely to be useful when you want to construct something,

I there's a step by step procedure which terminates after

�nitely many steps when the problem is of small size,

I the same procedure works for somewhat larger size, because

you know how to combine the results of all the steps, but

I it doesn't work in general, because even countably many

steps may not be enough.

The partially ordered set corresponds, roughly, to the possible

intermediate stages of the construction. The upper bound

corresponds to the way of combining them.

Notions of size depend on the situation. In our example above it

was the cardinality of the sets. When proving the existence of a

basis for a vector space it's the dimension.

Maximal elements aren't unique in general. If you suspect the

there is only one of the thing you're constructing then probably

Zorn's Lemma is not the easiest way to construct it.


