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Stronger, weaker and related concepts

It's possible to compare equivalence relations. � is stronger than

./ if x � y implies x ./ y and � is weaker than ./ if x ./ y implies

x � y . The terminology is a bit weird because every equivalence

relation is both stronger and weaker than itself. = is the

strongest relation on any set. The relation ./ where x ./ y for all

x and y is the weakest relation. Actually you can de�ne stronger

and weaker for any relations, not just equivalence relation.

Sometimes we want to construct an equivalence relation from a

relation. There's a standard way to do this. For any relation

there is an equivalence relation which is weaker than it, but

stronger than any other equivalence relation weaker than it.



An example: Graph Theory

A natural example of that construction comes from Graph

Theory. These are graphs with nodes and edges, not graphs of

functions. In other words, things like

a

b

c

d

e

f

\is connected to by an edge" is a relation on the set of nodes

which satis�es the second condition to be an equivalence relation,

but not the other two. \can be connected to by a �nite sequence

of edges" is an equivalence relation. It's weaker than \is

connected to by an edge" but stronger than an other equivalence

relation weaker than it.



Cantor's Theorem

For any set X the function f : X ! }(X ) de�ned by f (x) = fxg

is an injection. It is never a surjection. ? is not in its image, for

example. Is there some other f : X ! }(X ) which is a surjection?

No.

For �nite sets this is obvious. If #X = n then #}(X ) = 2n.

2n > n so there aren't enough elements of X to map onto all the

elements of }(X ).
Cantor's Theorem extends this to (possibly) in�nite sets. The

proof is surprisingly short, and the result is surprisingly useful. If

you look carefully at the proof in the notes you can �nd an echo

of the argument for why there is no set of all sets. Given a

surjection f : X ! }(X ) we set A = fy 2 X : y =2 f (y)g. If
there's an x 2 X such that f (x) = A then ask whether x 2 A. If

it is then it isn't and vice versa.



The Schr�oder-Bernstein Theorem (1/2)

We're working towards a theory of cardinalities of sets. Cantor's

Theorem will ultimately say that X is of strictly lower cardinality

than }(X ). The Schr�oder-Bernstein theorem will say the if the

cardinality of X is no larger than that of Y and the cardinality of

Y is no larger than that of X then they are of equal cardinality.

But I haven't de�ned cardinal numbers yet. The version without

cardinalities is this
Suppose f : X ! Y and g : Y ! X are injections. Then

there is a bijection h : X ! Y .

The proof is fairly long, but the idea isn't too complicated. It

would be easier if we assumed that X \ Y = ?. The �rst step is

therefore to construct a disjoint union of X and Y . Here we only

need the disjoint union of two sets but this is just a simple case of

a more general construction.



The Schr�oder-Bernstein Theorem (2/2)

The main idea is to label each element of the disjoint union of X

and Y with a label to indicate whether it belongs to the copy of

X or to the copy of Y . X and Y themselves aren't suitable as

labels because we can't guarantee X 6= Y . 1 and 2 would work

but I chose a and b.

The main idea of the proof is to form a graph whose nodes are

the elements of the disjoint union and where the edges connect

(a; x) to (b; f (x)) and (b; y) to (a; g(y)). The connected

components are of four types: closed loops, singly linked chains

stretching out in�nitely in both directions, singly linked chains

extending in�nitely from an element labelled a, and singly linked

chains extending in�nitely from an element labelled b. On each

connected component you shift elements either one step forward

or one step backward along the chain.



Zorn's Lemma

The \C" in \ZFC" refers to the Axiom of Choice. Roughly, it

says that given non-empty set valued function there is a function

which chooses one element from each set. You can use this, for

example, to show that every surjection has a right inverse. If

f : X ! Y what you need is a function g taking each y 2 Y to an

element of f �(fyg).
\Zorn's Lemma" was �rst proved by Kuratowski as a

consequence of the Axiom of Choice. Zorn suggested taking the

lemma as an axiom and proving the former axiom as a

consequence of it, but he never actually did this.

It's a good idea though because it's usually easier to use Zorn's

Lemma than the Axiom of Choice.

To state Zorn we'll need some terminology about partial orders.



Partial orders

A partial order is a relation 4 satisfying

I a 4 a.

I If a 4 b and b 4 c then a 4 c .

I If a 4 b and b 4 a then a = b.

A set with a partial order is a partially ordered set. This is not the

same as a directed set. The third condition is di�erent.

On a partially ordered set you can de�ne the notions of maximal,

greatest, and upper bound, and the dual notions of minimal, least

and lower bound. Maximal and greatest are not the same!

Greatest means greater then everything else. Maximal means

nothing else is strictly greater. For example, the set of non-empty

proper subsets of a given set, ordered by inclusion, has minimal

elements, the one element sets, and maximal elements, the all

but one element sets, but no greatest or least element.



Zorn again

Upper and lower bounds are always relative to a subset, e.g. an

upper bound for R in S . That's an element of S which is at least

as great as any element of R. If we required it to be in R it would

be a greatest element. For example, 1 is an upper bound for

(0; 1) in R, but not a greatest element because it's not in (0; 1).
We can now state Zorn:

Suppose (S ;4) is a partially ordered set. Suppose that

for each R 2 }(S) such that the restriction of 4 to R is

a total order on R, the set R has an upper bound. Then

S has a maximal element.

This is fairly opaque, but very useful!

It's used several times in this chapter and will be used again. One

application is that for any two sets there's an injection from one

of them to the other. It takes a bit of practice to learn how to

use Zorn's Lemma.



Cardinal numbers

We use #X = #Y as a short hand for \there is a bijection from

X to Y " and #X � #Y as a short hand for \there is an injection

from X to Y ". I will not attempt to attach a meaning to #X

separately, except when X is a �nite set. It can be done, but we

don't need it. There's also #X � #Y as an alternate notation

for #X � #Y .

This wouldn't be useful if the symbols = and � didn't behave

much as they do for natural numbers. For example, if #X � # Y

and #Y � #X then #X = #Y is the Schr�oder-Bernstein

theorem. If #X � #Y and #Y � #Z then #X � #Z . This is

the fact that the composition of injections is an injection.

There's a long list of properties in the notes. It would be even

longer if I'd de�ned < and >.


