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Neighbourhoods

The properties of the set of neighbourhoods were as follows

1. N (w) 6= ?

2. ? =2 N (w)

3. For any A;B 2 N (w) there's a C 2 N (w) such that A � C

and B � C .

4. If A 2 N (w) and A � B then B 2 N (w).

O(w) has the same properties, except for the last. We can now

recognise the third property as the statement that (N (w);�) is a
directed set.

We want a name for things which behave like N (w) or O(w).



Filters and pre�lters

We say that F 2 }(}(X )) is a �lter on X if

1. F 6= ?

2. ? =2 F

3. For any A;B 2 F there's a C 2 F such that A � C and

B � C .

4. If A 2 F and A � B then B 2 F .

F is called a pre�lter if it satis�es the �rst three. N (w) is a �lter

(and a pre�lter) while O(w) is a pre�lter (but not usually a �lter).

In our general setting for discussing limits, the set !�(D) satis�es
the �rst and third conditions. To get a sensible theory of limits

we want it to satisfy the second as well. In other words, we want

it to be a pre�lter.



Extra hypotheses

Our general setting involves a domain U, a co-domain Y with a

topology T , a function f from U to Y , a non-empty directed set

(D;4), and a monotone function ! from (D;4) to (}(U);�).
We'd like F = !�(D) to be a pre�lter. It's the image of a �lter

under a monotone function so F 6= ? and for any A;B 2 F
there's a C 2 F such that A � C and B � C . The missing

condition is ? =2 F .

For limx!w f (x) we had w 2 U � X , (D;4) = (O(w);�), and
!(W ) = U \W n fwg. !�(D) is the set of subsets of U of the

form U \W n fwg for some W 2 O(w). So ? =2 !�(D) means

that for every W 2 O(w) the set U \W n fwg is non-empty.

That's precisely the condition for w to be a limit point of U.



Extra hypotheses, continued

For limx!+1 f (x) we had U � R, (D;4) = (R;�), and
!(a) = U \ [a;+1). !�(D) is the set of subsets of U of the form

U \ [a;+1) for some a 2 R. So ? =2 !�(D) means that for every

a 2 R the set U \ [a;+1) is non-empty. In other words, for every

a 2 R there's an x 2 U with x � a. Or, equivalently, U has no

upper bound. We should expect that limx!+1 f (x) is unique
under that condition.

For limn!1 �n we had U = N, (D;4) = (N;�), and
!(m) = fn 2 N : m � ng. !�(D) is the set of subsets of N of the

form fn 2 N : m � ng for some m 2 N. So ? =2 !�(D) means

that for every m 2 N the set fn 2 N : m � ng is non-empty. This

is true. We should expect that limn!1 �n is unique without any

extra hypotheses.

You should be able to �gure out what hypothesis we need to

ensure that limx&w f (x) is unique.



Limits in general

Suppose U;Y are sets, T is a topology on Y , f is a function

from U to Y , (D;4) is a non-empty directed set, and ! is a

monotone function from (D;4) to (}(U);�). We say that z 2 Y

is the limit of f with respect to !, written

lim
!

f = z ;

if for all P 2 N (z) there's an a 2 D such that if x 2 !(a) then
f (x) 2 P.

We can prove analogues of the theorems for limx!w f (x) for
lim! f , e.g.

If ? =2 !�(D) and T is Hausdor� then there is at most

one z 2 Y such that lim! f = z.

There's also a monotonicity theorem if Y = R and a linearity

theorem if Y is a normed vector space.



Sums

We can develop a general theory of sums along the same lines.

Series are limits of partial sums, speci�cally the limit of the sum

of the �rst n summands. In general we have no concept of \�rst

n" elements, even for sets like Q which can be put in 1-to-1

correspondence with the natural numbers. We still have a

concept of �nite though.

Our set U is the set F of �nite subsets of S . Our set D is also F

and our relation 4 is �. Our ! takes a �nite subset A to the set

of all �nite sets containing A. Our f : U ! Y takes a �nite subset

to the sum over that subset. This makes sense in a context

where we can add pairs of elements, e.g. if Y is a normed vector

space. The hypothesis ? =2 !�(D) is always satis�ed. We can

de�ne the sum over S to be the limit f with respect to !.

Most, but not all, of the basic properties of sums follow from

those of limits.



Integrals

It's also possible to express integrals as limits. In fact that's the

main reason we're doing this. It will make this semester harder,

but next semester much easier.

It's not obvious how to do this, and there's more than one option.

The usual theory of Riemann integration involves partitioning an

interval into �nitely many subintervals. There's a notion of

re�nement and common re�nement. It make sense to choose D

to be the set of partitions of the interval of integration and

choose 4 to be the \is re�ned by" relation. The existence of a

common re�nement shows that (D;4) is a directed set. It's

non-empty because there's always the trivial partition.

We also need a U. Riemann's construction of Riemann integral

involves choosing a point in each subinterval and multiplying by

the length of the subinterval. It's equivalent, and better for our

purposes, to choose �nitely many points and give each a weight,

such that the weights add up to the length of the subinterval.



Integrals, continued

We can choose U to be the set of systems of weights, i.e. �nite

sets of points each of which is assigned a non-negative weight.

The function ! : D ! }(U) takes each partition to the set of

systems of weights compatible with it, i.e. such that the length of

each subinterval is the sum of the weights of the points it

contains. It's monotone. There's always at least one compatible

system of weights so !�(D) is non-empty.

We also need a function f : U ! R (or f : U ! Y , for suitable

Y ). The sensible choice of f takes a system of weights to the

weighted sum of the integrand, i.e. the sum of the value at each

point in the interval times the weight of that point.

The limit of this f with respect to this ! is then the Riemann

integral of the integrand over the interval. It automatically has

(most of) the properties we expect, e.g uniqueness, monotonicity,

linearity, etc. because limits have these properties.


