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Directed sets

Recall that a directed set is a pair (D;4) where 4 is a relation on

D satisfying

I a 4 a.

I If a 4 b and b 4 c then a 4 c .

I For any a, b there is a c such that a 4 c and b 4 c .

The last property is stated for pairs, but applies to �nite

collections in general. For any a1, a2, . . . , ak there is a c such

that a1 4 c , a2 4 c , . . . , ak 4 c .

The directed sets relevant to the limits limx!w f (x),
limx!+1 f (x), limn!1 �n, and limx&w f (x) are (O(w);�),
(R;�), (N;�), and ((0;+1);�) respectively.



Directed set examples (1/3)

The requirements are very weak, so there are many directed sets.

The conditions that a 4 a and if a 4 b and b 4 c then a 4 c are

obvious in each of the cases below and so will be ignored.

I The set N of non-empty subsets of a given set with the

relation �. If A, B are non-empty then there's a non-empty

C such that A � C and B � C . C = A [ B works.

I The set P of proper subsets of a given set with the relation

�. If A, B are non-empty then there's a proper C such that

A � C and B � C . C = A \B works. Note that (P;�) isn't
a directed set. If C = A [ B then A � C and B � C , but C

needn't be proper. Similarly, (N;�) isn't a directed set.

I The set V of �nite dimensional subspaces of a given vector

space with the relation � is a directed set. If A, B are �nite

dimensional subspaces then so is C = A \ B and A � C and

B � C .



Directed set examples (2/3)

I The set V of �nite dimensional subspaces of a given vector

space with the relation � is a directed set. We cannot use

A [ B in this case. A � A [ B and B � A [ B, but A [ B is

generally not a subspace. The correct choice of C is

C = A+ B. A � A+ B and B � A+ B, and A+ B is a

�nite dimensional subspace.

I The set F of �nite subsets of a given set with the relation �

is a directed set. If A, B are �nite subsets then there's a

�nite subset C such that A � C and B � C . C = A [ B

works.



Directed set examples (3/3)

I The set B(x) of open balls containing a given point x in a

metric space (X ; d), with the relation �. If x 2 B(y ; r) and
x 2 B(z ; s) then B(y ; r) � B(x ;max(2r ; 2s)) and
B(z ; s) � B(x ;max(2r ; 2s)). This is an easy consequence of

the triangle inequality.

I The set B of all open balls with the relation �.

B(y ; r) � B(y ;max(r ; d(y ; z) + s)) and
B(z ; s) � B(z ;max(r ; d(y ; z) + s)).

I The set B(x) with the relation �. If x 2 B(y ; r) and
x 2 B(z ; s) then B(y ; r) � B(x ; r � d(x ; y); s � d(x ; z)) and
B(z ; s) � B(x ; r � d(x ; y); s � d(x ; z)). B with the relation

� is not generally a directed set.



Directed sets and limits

Remember the table from last lecture:

f : U ! Y limx!w W 2 O(w) x 2 U \W n fwg

f : U ! Y limx!+1 a 2 R x 2 U and x � a

� : N! Y limn!1 m 2 N n � m

f : U ! Y limx&w � > 0 w < x < w + �

The third column features a parameter, which belongs to a

non-empty directed set. The fourth column features a subset of

the domain of our function/sequence, which depends on this

parameter. The sets are U \W n fwg, U \ [a;+1),
fn 2 N : m � ng, and (w ;w + �) respectively. In each case the

sets of that form, as the parameter varies, form a directed set

with the relation �. For example, given W1;W2 2 O(w), there is

a W 2 O(w) such that U \W1 n fwg � U \W n fwg and

U \W2 n fwg � U \W n fwg. W = W1 \W2 works.



Monotone functions

Both the third and fourth columns feature a directed set, and

there's a consistent relation between the two.

If (D;4) and (E ;2) are directed sets then a function ! from D

to E is called monotone if !(a) 2 !(b) whenever a 4 b.

The function from (O(w);�) to (}(U);�) which takes W to

U \W n fwg is monotone. In other words,

U \W1 n fwg � U \W2 n fwg whenever W1 �W2.

Similarly, the function from (R;�) to (}(U);�) which takes a to

U \ [a;+1) is monotone. U \ [a;+1) � U \ [b;+1) whenever
a � b.

You can check that the functions for the other two rows are also

monotone. The sets in the fourth column are the images of these

functions from the directed set in the third column to the power

set of the domain. Images of non-empty directed sets under

monotone functions are non-empty directed sets, which is why

the sets in the fourth column are non-empty directed sets.



That table, again

Here's that table again:
f : U ! Y limx!w W 2 O(w) x 2 U \W n fwg

f : U ! Y limx!+1 a 2 R x 2 U and x � a

� : N! Y limn!1 m 2 N n � m

f : U ! Y limx&w � > 0 w < x < w + �

Here's a new table re
ecting what we've just observed:

function limit directed set monotone function

f : U ! Y limx!w (O(w);�) !(W ) = U \W n fwg

f : U ! Y limx!+1 (R;�) !(a) = U \ [a;+1)

� : N! Y limn!1 (N;�) !(m) = fn 2 N : m � ng

f : U ! Y limx&w ((0;+1);�) !(�) = (w ;w + �)



The general setting

We now have most of what we need to describe a general theory

of limits. The ingredients are:

I a domain U

I a co-domain Y with a topology T

I a function f from U to Y

I a non-empty directed set (D;4)

I a monotone function ! from (D;4) to (}(U);�)

The image !�(D) with the relation � is a non-empty directed set.

To get a sensible theory of limits we need it to have one more

property.


