MAU22200 Lecture 8

John Stalker

Trinity College Dublin

27 September 2021



Directed sets

Recall that a directed set is a pair (D, <) where < is a relation on
D satisfying

> a<a

> Ifagxband b<gcthena<xc.

» For any a, bthereisa csuchthata<cand bxc¢
The last property is stated for pairs, but applies to finite
collections in general. For any a1, a», ..., ax there is a ¢ such
thatai1 < c, ao<¢c, ...,k s C.
The directed sets relevant to the limits limy_, f(x),
limx— 400 F(X), im0 atp, and limesy F(x) are (O(w), D),
(R, <), (N, <), and ((0, +00), >) respectively.



Directed set examples (1/3)

The requirements are very weak, so there are many directed sets.
The conditions that a< aand if a< b and b < ¢ then a < c are
obvious in each of the cases below and so will be ignored.

» The set N of non-empty subsets of a given set with the
relation C. If A, B are non-empty then there's a non-empty
Csuchthat AC Cand BC C. C = AU B works.

> The set P of proper subsets of a given set with the relation
D. If A, B are non-empty then there's a proper C such that
AD Cand B2 C. C = AN B works. Note that (P, C) isn't
adirectedset. f C=AUBthen AC Cand BC C, but C
needn't be proper. Similarly, (N, D) isn’'t a directed set.

» The set V of finite dimensional subspaces of a given vector
space with the relation 2 is a directed set. If A, B are finite
dimensional subspaces then sois C = AN B and AD C and
BDC.



Directed set examples (2/3)

» The set V of finite dimensional subspaces of a given vector
space with the relation C is a directed set. We cannot use
AUB inthiscase. ACAUBand BC AUB, but AUB is
generally not a subspace. The correct choice of C is
C=A+B. ACA+Band BCA+B,and A+ Bisa
finite dimensional subspace.

> The set F of finite subsets of a given set with the relation C
is a directed set. If A, B are finite subsets then there’s a
finite subset C suchthat AC Cand BC C. C=AUB
works.



Directed set examples (3/3)

» The set B(x) of open balls containing a given point x in a
metric space (X, d), with the relation C. If x € B(y, r) and
x € B(z,s) then B(y, r) C B(x, max(2r,2s)) and
B(z,s) C B(x, max(2r,2s)). This is an easy consequence of
the triangle inequality.

» The set B of all open balls with the relation C.
B(y,r) C B(y,max(r,d(y,z)+s)) and
B(z,s) C B(z,max(r,d(y,z) +5)).

» The set B(x) with the relation 2. If x € B(y, r) and
x € B(z,s) then B(y,r) 2 B(x,r —d(x,y),s — d(x, z)) and
B(z,s) D B(x,r —d(x,y),s — d(x,z)). B with the relation
D is not generally a directed set.



Directed sets and limits

Remember the table from last lecture:

f-U—=Y | limyoy | WeO(w) | xeUNnW\{w}
f:U=Y | limysioo aceR x€eUand x> a
a:N—=Y | limss meN n>m

frU=Y | limegw 6>0 w<x<w+6

The third column features a parameter, which belongs to a
non-empty directed set. The fourth column features a subset of
the domain of our function/sequence, which depends on this
parameter. The sets are UN W \ {w}, UNJa, +00),

{neN: m<n}, and (w, w + &) respectively. In each case the
sets of that form, as the parameter varies, form a directed set
with the relation O. For example, given Wi, Wo € O(w), there is
a W e O(w) such that Un Wi \{w} D Un W\ {w} and
UnWo\{w} D UnW\{w}. W= WinN W, works.



Monotone functions

Both the third and fourth columns feature a directed set, and
there's a consistent relation between the two.

If (D, <) and (E, X) are directed sets then a function w from D
to E is called monotone if w(a) X w(b) whenever a < b.

The function from (O(w), D) to (e(U), 2) which takes W to
Un W\ {w} is monotone. In other words,

Unwi\{w} D UN W, \ {w} whenever Wi DO Ws.

Similarly, the function from (R, <) to (p(U), 2) which takes a to
UnNJa, +o0) is monotone. UNJ[a, +o0) 2 UN|[b, +00) whenever
a<b.

You can check that the functions for the other two rows are also
monotone. The sets in the fourth column are the images of these
functions from the directed set in the third column to the power
set of the domain. Images of non-empty directed sets under
monotone functions are non-empty directed sets, which is why
the sets in the fourth column are non-empty directed sets.



That table, again

Here's that table again:

f-U—=Y | limysy | WeO(w) | xeUNnW\{w}
f:U=Y | limysioo aceR xeUand x> a
a:N—=Y | limss meN n>m

frU=Y | limegw 6>0 w<x<w+6

Here's a new table reflecting what we’ve just observed:

function | limit | directed set |  monotone function
FUSY | imew | (OW).2) | a(W)=UnW\ {w}
f:U—=Y | limsie (R, <) w(a) = UNa, +o0)
oa:N=Y | im0 (N, <) w(m)={neN: m<n}
f:U—=Y | limegw | ((0,400),>) w(d) = (w, w+9)




The general setting

We now have most of what we need to describe a general theory
of limits. The ingredients are:

> a domain U

» a co-domain Y with a topology T

> a function f from U to Y

» a non-empty directed set (D, <)

» a monotone function w from (D, X) to (p(U), 2)

The image w.(D) with the relation D is a non-empty directed set.
To get a sensible theory of limits we need it to have one more
property.



