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Properties of open sets in a metric space

Recall that open balls in a metric space (X ; d) are de�ned by

B(x ; r) = fy 2 X : d(x ; y) < r for r > 0. Also that S � X is

open if and only if it contains an open ball about each of its

points, i.e. for all x 2 S there is an r > 0 such that B(x ; r) � S .

We saw last time that if (X ; d) is a metric space then X and ?

are open (and also closed) subsets of X .

Two other useful facts are that �nite intersections of open sets

are open and arbitrary unions of open sets are open.

We'll start with the intersections. It's enough to prove that the

intersection of two open sets is open. The general case follows by

induction on the number of sets.



Intersections

Suppose V and W are open. If x 2 V \W then x 2 V and

x 2W . x 2 V and V is open so there is an s > 0 such that

B(x ; s) � V . x 2W and W is open so there is a t > 0 such that

B(x ; t) �W . There's no reason why t would be equal to s. Let

r = min(s; t). Then B(x ; r) � B(x ; s) and B(x ; r) � B(x ; t). So
B(x ; r) � V and B(x ; r) �W . Therefore B(x ; r) � V \W . For

an arbitrary x 2 V \W we found an r > 0 such that

B(x ; r) � V \W . So V \W is open.

It wouldn't be hard to prove the result for �nite intersections

directly, without induction. If x 2 \nj=1Vj and Vj is open for each

j then choose sj such that B(x ; sj) � Vj . Let r = min1�j�n sj .
Then B(x ; r) � \nj=1Vj .

It's clear where �niteness is used: the minimum of �nitely many

positive numbers is positive. The corresponding statement for

in�nite intersections of open sets is false, as the example

f0g = \1j=1(�1=j ; 1=j) shows.



Unions

The statement about unions is conceptually easier but

notationally harder.

Suppose E is a set of open sets. Then
⋃
V2E V is open.

As a notational convention I try to use lower case letters, e.g. x ,

y , for points, upper case letters, e.g. X , Y for sets of points and

script letters, e.g. E , T , for sets of sets of points. This will

sometimes break down. For example, the \points" in the

Hamming metric example are sets.

If x 2
⋃
V2E V then x 2 V for some V 2 E . V is open so there is

an r > 0 such that B(x ; r) � V . But V �
⋃
V2E V . If mixing free

and bound variables makes you uneasy then write this as

V �
⋃
W2E W . In any case, B(x ; r) �

⋃
V2E V . So

⋃
V2E V is

open.



Open sets and limits

It's possible to describe limits without referring to the metric or

to balls directly.

If (X ; dX ) and (Y ; dY ) are metric spaces, w 2 X, z 2 Y

and f : X ! Y is a function then limx!w f (x) = z if and

only if for every open Z 2 }(Y ) such that z 2 Z there is

an open W 2 }(X ) such that w 2W and

W n fwg � f �(Z ):

The version in the notes is more complicated because it applies to

a function f de�ned on a subset U of X which needn't have w as

an element.

Note that dX and dY don't appear, except indirectly since open

sets are de�ned in terms of open balls and open balls are de�ned

in terms of metrics.



Topologies

The next step in our progressive generalisation is a bit of a leap

compared to the previous ones.

A topology on a set X is a T 2 }(}(X )) such that

I X 2 T and ? 2 T .

I If V ;W 2 T then V \W 2 T .

I If E � T then
⋃
V2E V 2 T .

The set of open sets in a metric space is a topology. In fact the

de�nition was obtained by abstracting the properties proved

previously for open sets in a metric space. We've e�ectively

turned that theorem into a de�nition. Or rather into the

de�nition of a topology plus the theorem that open sets in a

metric space form a topology.



Limits in topological spaces

We can now de�ne limits in the context of topological spaces by

replacing open sets by elements of T .

If (X ; TX ) and (Y ; TY ) are topological spaces, w 2 X,

z 2 Y and f : X ! Y is a function then limx!w f (x) = z

if (and only if) for every Z 2 TY such that z 2 Z there

is a W 2 TX such that w 2W and

W n fwg � f �(Z ):

Again, the version in the notes is more complicated because it

doesn't assume f is de�ned on all of X .

We can take theorems for limits in metric spaces and try to adapt

to topological space. Ignore, for now, the question of why we'd

want to. This is a more complicated operation than moving from

R
n to normed vector spaces or from normed vector spaces to

metric spaces.



Hausdor� topologies

If we try to prove the uniqueness of limits in the context of

topological spaces we �nd that we can't quite do it. The notion

of a topology captured some of the properties of open sets in a

metric space, but not all of them, and not enough of them.

Another property of open sets in a metric space is that if x 6= y

then there are open sets V and W such that x 2 V , y 2W and

V \W = ?. Various choices of V and W work. One is given in

the notes.

The corresponding statement for topological spaces would be

that if x 6= y then there are V ;W 2 T such that x 2 V , y 2W

and V \W = ?. That's not true for all topologies though.

T = f?;Xg satis�es all the requirements to be a topology, but

doesn't have the property above if #X > 1. This topology is

called the trivial topology.



Hausdor� topologies (continued)

We could add this extra condition to the de�nition of a topology,

but

I there are useful examples, more interesting than the trivial

topology, where it fails, and

I that's not the way people have been using the word for the

last century.

Instead we introduce a de�nition. A topology T is called

Hausdor� if whenever x 6= y there are V ;W 2 T such that

x 2 V , y 2W and V \W = ?. The topology of open sets in a

metric space is always Hausdor� but the trivial topology is only

Hausdor� if #X � 1.

As an aside, this shows that the trivial topology does not come

from a metric.



Rescuing uniqueness

If we try to prove the uniqueness of limits in the context of

topological spaces we �nd that we can't quite do it.

In the context of Hausdor� topological spaces it works though.

You don't need both topologies to be Hausdor� though. Only TY
needs to be Hausdor�.

There's another hypothesis that's needed, this time on (X ; TX ).
This one was already needed in the metric space case. It's a

consequence of the awkward 0 < jx � w j in the historic de�nition

of limits. That because a nfwg in our generalisation. The extra

hypothesis we need is that w is a limit point of the domain, U, of

the function f . That means that for every W 2 T such that

w 2W we have U \W n fwg 6= ?.


